• Title/Summary/Keyword: equipment operator

Search Result 266, Processing Time 0.027 seconds

BILBO Network: a proposal for communications in aircraft Structural Health Monitoring sensor networks

  • Monje, Pedro M.;Aranguren, Gerardo
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.293-308
    • /
    • 2014
  • In the aeronautical environment, numerous regulatory and communication protocols exist that cover interconnection of on-board equipment inside the aircraft. Developed and implemented by the airlines since the 1960s, these communication systems are reliable, strong, certified and able to contact different sensors distributed throughout the aircraft. However, the scenario is slightly different in the structural health monitoring (SHM) field as the requirements and specifications that a global SHM communication system must fulfill are distinct. The number of SHM sensors installed in the aircraft rises into the thousands, and it is impossible to maintain all of the SHM sensors in operation simultaneously because the overall power consumption would be of thousands of Watts. This design of a new communication system must consider aspects as management of the electrical power supply, topology of the network for thousands of nodes, sampling frequency for SHM analysis, data rates, selected real-time considerations, and total cable weight. The goal of the research presented in this paper is to describe and present a possible integration scheme for the large number of SHM sensors installed on-board an aircraft with low power consumption. This paper presents a new communications system for SHM sensors known as the Bi-Instruction Link Bi-Operator (BILBO).

Education Contents Development that Use Thermoelectric Power Plant Generation Facility Third Dimensional Model (3차원 모델을 활용한 발전설비 교육컨텐츠 개발)

  • Kim, Seok-B.;Back, Nam-H.;Son, Kwang-S.;Kim, Joo-Seok;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.362-368
    • /
    • 2008
  • The purpose of this is providing employees who take charge of operation and maintenance at power plant with education contents that can be used for self-studying and on the job training through their computers. We developed the education contents for making actually application possible using this piping and instrument diagram(P&ID), operation and maintenance procedure, unit specification and material of 500MW thermal power plant those include unit equipment 3-dimension animation, character and narration performance considering making teaching plan, flexibility, extension, reuse, maintenance and focusing on user. Specially, we developed the flash type education contents about power plant operation based on the plant 3-dimension animation and the spot real picture concerned about new generation trend for power plant incoming employees actual knowledge. in addition, this contents apparently contributed to improve the level of employees technical power as distributed to employees.

  • PDF

The Mechanism and Detection of Tool Fracture using Sensor Fusion in Cutting Force and AE Signals for Small Diameter Ball-end Milling (미세 볼엔드밀가공시 절삭력과 음향방출신호에 의한 공구 파손 검출 및 메커니즘)

  • Wang, Duck-Hyun;Kim, Won-Il;Lim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.24-31
    • /
    • 2004
  • A successful on-line monitoring system for conventional machining operations has the potential to reduce cost, guarantee consistency of product quality, improve productivity and provide a safer environment for the operator. In fine-shape machining, typical signs of tool problems such as vibration, noise, chip flow characteristics and visual signs are almost unnoticeable without the use of special equipment. These characteristics increase the importance of automatic monitoring in fine-shape machining, however, sensing and interpretation of signals ar more complex. In addition, the shafts of the mini-tools break before the typical extensive cutting edge of the tool gets damaged. In this study, the existence of a relationship between the characteristics of the cutting force and tool usage was investigated, and tool breakage detection algorithm by LabVIEW was developed and the following results are obtained. It was possible to use a relative error compare which mainly used in established experiment and investigated tool breakage detection algorithm in time domain which can detect AE and cutting force signals more effective and accurate.

  • PDF

Development of the Auto-Aging Test Controller for a Hydraulic Motor (유압모터 길들이기 자동시험 제어기 개발)

  • Jung, Gyu Hong;Shin, Dae Young;Seo, Dong Jin
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.28-34
    • /
    • 2015
  • Because heavy-duty construction vehicles such as excavators are required for good engine-room cooling capacity, a hydraulic gear motor is adopted in the cooling fan drive mechanism to actively control the output speed, instead of adopting the conventional ON/OFF type belt drive. While gear motors are normally limited to 140bars of operating pressure, those for the cooling fan are capable of operating at continuous pressures of up to 220bars. After assembly, all gear motors for high pressure must pass an aging test which is a kind of the wearing process between the gear teeth and motor housing. During the aging process with gradual pressure increments, gear sticking sometimes occurs due to abnormal wear, resulting in defects. This paper focuses on a gear-sticking free aging test controller that is designed together with the knowledge of an experienced operator and the analysis results of experimental data of the gear jamming phenomenon. From the aging experiment, it is demonstrated that the developed controller that can alter the setting pressure of the load pump is effective for stabilizing the abrupt increase in the motor input pressure, thus preventing the hydraulic motor from stopping. This is expected to be helpful for the reduction of defects and increase in productivity.

Concept Design of Fire Safety Module for SV20 Service in the Korean e-Navigation System

  • Kim, Byeol;Moon, Serng-Bae;Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.42 no.5
    • /
    • pp.323-330
    • /
    • 2018
  • The Korean e-Navigation system is a Korean approach to correspond with implementation of IMO e-Navigation. It provides five services, among them SV20 service, a ship remote monitoring system that collects and processes sensor information related to fire, navigation, and seakeeping performance safety. The system also detects abnormal conditions such as fires, capsizing, sinking, navigation equipment failure during navigation, and calculates the safety index and determines the emergency level. According to emergency level, it provides appropriate emergency response guidance for the onboard operator. The fire safety module is composed of three sub-modules; each module is the safety index sub-module, the emergency level determination sub-module and emergency response guidance sub-module. In this study, operational concept of the fire safety module in SV20 service is explained, and fire safety assessment factors are estimated, to calculate the fire safety index. Fire assessment factors included 'Fire detector position factor,' 'Smoke diffusion rate factor,' and 'Fire-fighting facilities factor.'

PROLONGATION OF THE BOR-60 REACTOR OPERATION

  • IZHUTOV, ALEXEY L.;KRASHENINNIKOV, YURI M.;ZHEMKOV, IGOR Y.;VARIVTSEV, ARTEM V.;NABOISHCHIKOV, YURI V.;NEUSTROEV, VICTOR S.;SHAMARDIN, VALENTIN K.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • The fast neutron reactor BOR-60 is one of the key experimental facilities worldwide to perform large-scale tests of fuel, absorbing, and structural materials for advanced reactors. The BOR-60 reactor was put into operation in December 1969, and by the end of 2014 it had been operating on power for ~265,000 hours. BOR-60 still demonstrates potential capabilities to extend the lifetime of sodium-cooled fast reactors. The BOR-60 lifetime should have expired at the end of 2014. Over the past few years, a great scope of work has been performed to justify the possibility of extending its lifetime. The work included inspection of the equipment conditions, calculations and experimental research on operating parameters and the conditions of nonremovable components, investigation of the structural material samples after their long-term operation under irradiation, etc. Based on the results of the work performed, the residual lifetime was evaluated and the reactor operator made a decision to extend the lifetime period of the BOR-60 reactor. After considering both a set of documents about the reactor conditions and the positive decision of independent experts, the Regulatory Authority of the Russian Federation extended the BOR-60 operating license up to 2020.

A Study on Air-Conditioning System for Excavator using Forced Exhaust (강제배기를 이용한 굴삭기 공기조화 시스템에 관한 연구)

  • Hwang, J.H.;Jeong, C.S.;Ko, J.H.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • The excavator is used in a variety of construction environments. There are many kinds of risk like falling rocks or harmful dust. The excavator cabin protects the operator not only from these harmful environments but also provides a comfortable working environment. By the way, the excavator cabin consumes a lot of energy for cabin air conditioner. For this reason, the research is required to reduce energy consumption. This study suggests the air conditioning system for excavator using forced exhaust. First, the forced exhaust system simulated by AMESim tool and surveyed the applicability. Using AMESim simulation, it was investigated the effect of cabin inside temperature by intake flow rate and intake air temperature. The experiment executed using the 1.5 ton excavator and field tested according to the intake flow rate. Finally, verified the applicability on the air conditioning system for excavator using forced exhaust.

Investigation of Open-Loop Transmit Power Control Parameters for Homogeneous and Heterogeneous Small-Cell Uplinks

  • Haider, Amir;Sinha, Rashmi Sharan;Hwang, Seung-Hoon
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • In Long Term Evolution (LTE) cellular networks, the transmit power control (TPC) mechanism consists of two parts: the open loop (OL) and closed loop. Most cellular networks consider OL/TPC because of its simple implementation and low operation cost. The analysis of OL/TPC parameters is essential for efficient resource management from the cellular operator's viewpoint. In this work, the impact of the OL/TPC parameters is investigated for homogeneous small cells and heterogeneous small-cell/macrocell network environments. A mathematical model is derived to compute the transmit power at the user equipment, the received power at the eNodeB, the interference in the network, and the received signal-to-interference ratio. Using the analytical platform, the effects of the OL/TPC parameters on the system performance in LTE networks are investigated. Numerical results show that, in order to achieve the best performance, it is appropriate to choose ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in a homogenous small-cell network. Further, the selections of ${\alpha}_{small}=1$ and $P_{o-small}=-100dBm$ in the small cells and ${\alpha}_{macro}=0.8$ and $P_{o-macro}=-100dBm$ in the macrocells seem to be suitable for heterogeneous network deployment.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.508-516
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. Failure modes in this study include refrigerant leakage, decrease in mass flow rate of the chilled water and cooling water, and sensor error of the cooling water inlet temperature. It is possible to detect and diagnose faults in this study by adopting FDD algorithm using only four parameters(compressor outlet temperature, chilled water inlet temperature, cooling water outlet temperature and compressor power consumption). Refrigerant leakage failure is detected at 20% of refrigerant leakage. When mass flow rate of the chilled and cooling water decrease more than 8% or 12%, FDD algorithm can detect the faults. The deviation of temperature sensor over $0.6^{\circ}C$ can be detected as fault.

Assessment Procedure of Safety Integrity Level(SIL) Based on Flowchart (플로우차트 기반 안전무결성수준 평가 절차)

  • Kim, Gi-Young;Ko, Byeong-Gak;Jang, Joong-Soon;Chan, Sung-Il
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.107-122
    • /
    • 2010
  • Functional safety is the part of the overall safety of a system that depends on the system or equipment operating correctly in response to its inputs, including the safe management of likely operator errors, hardware failures, systematic failures, and environmental changes. One of the essential concepts of functional safety is Safety Integrity Level(SIL). It is defined as a relative level of risk-reduction provided by a safety function, or to specify a target level of risk reduction. In this paper, each element of SIL assessment will be defined. Based on each element, specific process of SIL selection will be established by using flowchart. The flowchart provides a SIL assessment guideline for functional safety engineers. The proposed theory will be verified by applying to a oil refining plant for SIL assessment.