• Title/Summary/Keyword: equipment interface

Search Result 535, Processing Time 0.031 seconds

On-line Monitoring and Diagnostics for Distribution Panel System (배전반 시스템의 온라인 감시 및 진단)

  • Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.106-110
    • /
    • 2008
  • Continuous on-line temperature monitoring allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF

On-Line Diagnostics and Monitoring of Distribution Panel Using IR-Sensor (광온도센서를 이용한 분전반의 온라인 진단 및 감시)

  • Yun, Ju-Ho;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2110-2111
    • /
    • 2008
  • Continuous on-line temperature monitoring allows corrective measures to be taken to prevent upcoming failure. Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system.

  • PDF

The operation concept and procedure of mechanical ground support equipment for KSLV-II launch complex (한국형발사체 발사대시스템 지상기계설비 운용개념 및 절차)

  • Lim, Chankyoung;Kim, Daerae;Yang, Seongpil;Lee, Yeongho;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.30-35
    • /
    • 2017
  • The mechanical ground support equipment of KSLV-II launch complex is a collection of systems for transporting, erecting, lowering the launch vehicle and for providing an interface to supply propellants to the launch vehicle. In this paper, compositions, functions and design results of mechanical ground support equipment are introduced. In addition, the operation concept of each equipment along with operation procedure is presented.

  • PDF

A Technical Trend on On-Line Condition Monitoring and Diagnostics of Power Equipments (배전설비의 온라인 모니터링과 진단 기술 동향)

  • Lim, Wan-Soo;Lee, Tae-Woo;Yeo, Woon-Cheol;Lee, Sung-Gil;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1974-1975
    • /
    • 2007
  • Continuous temperature monitoring and event recording provides information on the energized equipment's response to normal and emergency conditions. On-line temperature monitoring helps to coordinate equipment specifications and ratings, determine the real limits of the monitored equipment and optimize facility operations. Using wireless technique eliminates any need for special cables and wires with lower installation costs if compared to other types of online condition monitoring equipment. In addition, wireless temperature monitoring works well under difficult conditions in strategically important locations. Wireless technology for on-line condition monitoring of energized equipment is applicable both as standalone system and with an interface with power quality monitoring system. The paper presents the results of wireless temperature monitoring of switchgear at a power plant over a two-year period.

  • PDF

Mass Transport Properties and Influence of Natural Convection for Voltammetry at the Agarose Hydrogel Interface

  • Kim, Byung-Kwon;Park, Kyungsoon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.347-353
    • /
    • 2022
  • Agarose hydrogel, a solid electrolyte, was investigated voltammetrically in terms of transport properties and natural convection effects using a ferrocenyl compound as a redox probe. To confirm the diffusion properties of solute on the agarose interface, the diffusion coefficients (D) of ferrocenemethanol in agarose hydrogel were determined by cyclic voltammetry (CV) according to the concentration of agarose hydrogel. While the value of D on the agarose interface is smaller than that in the bulk solution, the square root of the scan rate-dependent peak current reveals that the mass transport behavior of the solute on the agarose surface shows negligible convection or migration effects. In order to confirm the reduced natural convection on the gel interface, scan rate-dependent CV was performed in the solution phase and on the agarose surface, respectively. Slow scan voltammetry at the gel interface can determine a conventional and reproducible diffusion-controlled current down to a scan rate of 0.3 mV/s without any complicated equipment.

Design of Low Pass Filter to reduce EMI from 2.SG SDH system (2.5G SDH 전자파 감소용 저역통과필터 설계)

  • 이성원;김영범
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.4
    • /
    • pp.21-30
    • /
    • 2001
  • In this paper, EMI measurement, the STGU simulation being conducted, filter design, its characteristics, and its implementation to the PCB, and finally test results are discussed. When the low pass filter was implemented within the STGU, the power of EMI decreased more than 20dBm. Finally, when TE and MTIE, two important quality measure in synchronous reference clock, was assessed, ITU-T G813 requirement was satisfied. EMI(Electromagnetic Interface) is a measure of electomagnetic radiation from equipment in the range of 10KHz to 3GHz, and can cause unexpected reactions of electronics/electrical equipment. In this study, for safe and stable communication operation, a STGU (System Timing Generation Unit), which is a 2.5G SDH System and a major EMI source, was employed to simulate electromagnetic interface. Using Open-Site test, the power of fundamental frequency of EMI of interest and its harmonics were measured. Also, a low pass filter at cut-off frequency of 2GHz was specifically designed for this study to minimize the effect of EMI between electronic components.

  • PDF

Diagnosis Design Using Embedded Transmission Simulator (임베디드 변속기 시뮬레이터를 이용한 진단알고리즘 설계)

  • Jung, G.H.;Kim, K.D.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.56-61
    • /
    • 2010
  • Simulator is a development equipment which enables the ECU to operate in normal mode by simulating the interface signal between ECU and mechanical system electrically. Embedded simulator means simulation function is embedded in ECU firmware, hence the electrical signal interface is replaced by the substitution of information at system program level. This paper explains the development of embedded transmission simulator for the verification of TCU firmware function which covers shifting control and on-board diagnosis. The embedded simulation program is executed in TCU processor along with the TCU firmware and it provides TCU firmware with not only the speed information those are appropriate both in driving and shifting conditions, but also the fault detection signals. Experimental results show that the validity of embedded simulator and its usefulness to the TCU firmware development and verification.

  • PDF

Adhesives and Sealants Used in Machinery and Equipment Assembly, Maintain and Repair

  • Zhai, Haichao;Li, Yinbai;Lin, Xinsong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • In this paper, some idea about the use of Metal and ceramic filled epoxy adhesive, Anaerobic adhesive and RTV silicone in the assembly, maintain and repair of machinery and equipment is given. Many examples which have been successfully used in Chinese industry are introduced: ${\bullet}$ Wear, Abrasion, Corrosion/Erosion Resistance and Metal Rebuilding Worn shafts, Scored Hydraulic Ram, Bearing Housings, Slurry Pumps (Bodies & Impellers), Slide-ways, Heat Exchangers, Cracked Castings and Molds. Leaking Pipes and Tanks. ${\bullet}$ Locking and Retaining Thread, Bearing, Keyways, Bolts, Nuts, Studs, Gears, Collars, Motors. ${\bullet}$ Scaling and Gasketing Flanges, Pipe Joints, Machined surfaces.

  • PDF

Heated Tool Bonding of Plastic Pipes

  • Troughton, Mike;Wermelinger, Joerg;Choi, Sunwoong
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2020
  • Heated tool joining is a popular method for joining parts made from plastics and composite materials. The method is commonly known as butt fusion in the plastic pipe industry and this paper provides a short introduction to the basics of producing a good butt fusion joint. The function of each of the essential parts of the butt fusion equipment is described followed by a presentation of the important parameters of the bonding process in reference to a well-established interfacial pressure versus time curve. The butt fusion procedure is then outlined with good practices that detail the preparation of equipment and pipes to be joined as well as the fusion joining process.

Prediction of Deterioration Rate for Composite Material by Moisture Absorption

  • Kim, Yun-Hae;An, Seung-Jun;Jo, Young-Dae;Bae, Chang-Won;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.296-302
    • /
    • 2010
  • If the fiber reinforced plastic is exposed to the moisture for a long period of time, most of moisture absorption occurs on the resin place, thus dropping cohesiveness between the molecules as the water molecules permeated between high molecular chains grant high molecular mobility and flexibility. Also as the micro crack occurs due to the permeation of moisture on the interface of glass fiber and epoxy resin, it is developed to the overall damage of interface place. Hence, the study on absorption is essential as the mechanical and physical properties of fiber reinforced composites are reduced. However, the study on absorption has the inconvenience needing to expose composite materials to fresh water or seawater for 1 month or up to 1 year. Therefore, this study has exposed fiber reinforced composites to fresh water and has developed a model with an accuracy of 98% after comparing the analysis value obtained by using ANSYS while basing on the experimental value of property decline by absorption and the basic properties of glass fiber and epoxy resin used in the experiment.