• Title/Summary/Keyword: equilibrium isotherm

Search Result 367, Processing Time 0.023 seconds

Analysis on the Frumkin Adsorption Isotherm of the Over-Potentially Deposited Hydrogen (OPD H) at the Polycrystalline Ni | Alkaline Aqueous Electrolyte Interface Using the Phase-Shift Method

  • Chun Jang H.;Jeon Sang K.
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.146-151
    • /
    • 2001
  • The Frumkin adsorption isotherm of the over-potentially deposited hydrogen (OPD H) for the cathodic $H_2$ evolution reaction (HER) at the poly-Ni|0.05M KOH aqueous electrolyte interface has been studied using the phase-shift method. The behavior of the phase shift $(0^{\circ}\leq{\phi}\leq90^{\circ})$ for the optimum intermediate frequency corresponds well to that of the fractional surface coverage $(1\geq{\theta}\geq0)$ at the interface. The phase-shift method, i.e., the Phase-shift profile $(-{\phi}\;vs.\;E)$ for the optimum intermediate frequency, can be used as a new method to estimate the Frumkin adsorption isotherm $(\theta\;vs.\;E)$ of the OPD H for the cathodic HER at the interface. At the poly-Ni|0.05M KOH aqueous electrolyte interface, the rate (r) of change of the standard free energy of the OPD H with $\theta$, the interaction parameter (g) for the Frumkin adsorption isotherm, the equilibrium constant (K) for the OPD H with $\theta$, and the standard free energy $({\Delta}G_{\theta})$ of the OPD H with ${\theta}$ are $24.8kJ mol^{-1},\;10,\;5.9\times10^{-6}{\leq}K{\leq}0.13,\;and\;5.1\leq{\Delta}G_{\theta}\leq29.8kJ\;mol^{-1}$. The electrode kinetic parameters $(r,\;g,\;K,\;{\Delta}G_{\theta})$ depend strongly on ${\theta} (0{\leq}{\theta}{\leq}1)$.

Phosphate Removal from Aqueous Solution by Aluminum (Hydr)oxide-coated Sand

  • Han, Yong-Un;Park, Seong-Jik;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • A powder form of aluminum (hydr)oxides is not suitable in wastewater treatment/filtration systems because of low hydraulic conductivity and large sludge production. In this study, aluminum (hydr)oxide-coated sand (AOCS) was used to remove phosphate from aqueous solution. The properties of AOCS were analyzed using a scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS) and an X-ray diffractometer (XRD). Kinetic batch, equilibrium batch, and closed-loop column experiments were performed to examine the adsorption of phosphate to AOCS. The XRD pattern indicated that the powder form of aluminum (hydr)oxides coated on AOCS was similar to a low crystalline boehmite. Kinetic batch experiments demonstrated that P adsorption to AOCS reached equilibrium after 24 h of reaction time. The kinetic sorption data were described well by the pseudo second-order kinetic sorption model, which determined the amount of P adsorbed at equilibrium ($q_e$ = 0.118 mg/g) and the pseudo second-order velocity constant (k = 0.0036 g/mg/h) at initial P concentration of 25 mg/L. The equilibrium batch data were fitted well to the Freundlich isotherm model, which quantified the distribution coefficient ($K_F$ = 0.083 L/g), and the Freundlich constant (1/n = 0.339). The closed-loop column experiments showed that the phosphate removal percent decreased from 89.1 to 41.9% with increasing initial pH from 4.82 to 9.53. The adsorption capacity determined from the closed-loop experiment was 0.239 mg/g at initial pH 7.0, which is about two times greater than that ($q_e$ = 0.118 mg/g) from the kinetic batch experiment at the same condition.

Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Coomassi Brilliant Blue G Using Activated Carbon (입상 활성탄에 의한 Coomassi Brilliant Blue G의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.290-297
    • /
    • 2014
  • Batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for adsorption of coomassi brilliant blue G (CBBG) using activated carbon with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich and Dubinin-Radushkevich isotherms. From estimated separation factor of Langmuir and Freundlich, this process could be employed as effective treatment for removal of CBBG. Also from Dubinin-Radushkevich isotherm model, adsorption energy (E) indicated adsorption process is physical adsorption. From kinetic experiments, the adsorption reaction was found to confirm to the pseudo second order model with good correlation. Intraparticle diffusion was rate controlling step. Thermodynamic parameters like change of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (406.12 kJ/mol) indicated endothermic nature of the adsorption process. The change of entropy (1.66 kJ/mol K) showed increasing disorder in process. The change of free energy found that the spontaneity of process increased with increasing adsorption temperature.

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Granular Activated Carbon (입상 활성탄을 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • In the present study, batch experiments were carried out for the utilizatioin of activated carbon as a potential adsorbent to remove a hazardous malachite green from an aqueous solution. The effects of various parameters such as temperature, contact time, initial concentration on the adsorption system were investigated. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Langmuir isotherm model. From determined separation factor, the activated carbon could be employed as an effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing both the initial concentration of malachite green and the adsoprtion temperature. Thermodynamic parameters like that activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the adsorption nature. The activation energy calculated from Arrhenius equation indicated that the adsortpion of malachite green on the zeolite was physical process. The negative Gibbs free energy change ($\Delta$G = -3.68~-7.76 kJ/mol) and the positive enthalpy change ($\Delta$H = +26.34 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range of 298~318 K.

Adsorption Isotherms of Catechin Compounds on (+)Catechin-MIP

  • Jin, Yinzhe;Wan, Xiaolong;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1549-1553
    • /
    • 2008
  • A molecular imprinted polymer (MIP) using (+)catechin ((+)C) as a template and acrylamide (AM) as a functional monomer was prepared. Acetonitrile was used as the porogen with ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2'-azobis(isobutyronitrile) (AIBN) as the initiator. The adsorption isotherms in the MIP were measured and the parameters of the equilibrium isotherms were estimated by linear and nonlinear regression analyses. The linear equation for original concentration and adsorpted concentrations was then expressed, and the adsorption equilibrium data were correlated into Langmuir, Freundlich, quadratic, and Langmuir Extension isotherm models. The mixture compounds of (+)C and epicatechin (EC) show competitive adsorption on specific binding sites of the (+)catechin-MIP. The adsorption concentrations of (+)C, epicatechin (EC), epicatechin gallate (ECG), and epigallocatechin gallate (EGCG), on the (+)catechin-molecular imprinted polymer were compared. Through the analysis, the (+)catechin-molecular imprinted polymer showed higher adsorption ability than blank polymer which was synthesized molecular imprinted polymer without (+)catechin. Furthermore, the competitive Langmuir isotherms were applied to the mixture compounds of (+)C and EC.

Removal of aqueous heavy metals (Pb, Cu, Zn, Cd) by scoria from Jeju, Korea

  • Kwon, Jang-Soon;Yun, Seong-Taek
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.380-383
    • /
    • 2004
  • Heavy metal release from wastewater is a serious environmental problem, and therefore, various wastewater treatment techniques have been developed. Among the techniques, sorption technique is most attractive. Considerable researches have been recently focused on finding out inexpensive sorbents, especially from various natural materials. In order to evaluate the applicability of the scoria taken from the Jeju Island, Korea to remove heavy metals (Pb, Cu, Zn, Cd) from aqueous solutions, equilibrium sorption experiments were conducted in this study. In equilibrium tests, powdered activated carbon (PAC), one of the most commonly used sorbents, was also tested to compare the effectiveness of the Jeju scoria with that of PAC. The Jeju scoria had larger adsorption capacity and affinity for metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) than PAC. The sorption parameters of the two sorbents were evaluated by using both the Langmuir and Freundlich isotherms, and the sorption data were better fitted to the Freundlich isotherm. In addition, the sorption behavior of metal ions (Pb(II), Cu(II), Zn(II), Cd(II)) onto the scoria displayed a typical characteristic of the cation sorption. The removal of metal ions decreased at a lower pH condition due to competition with hydrogen ions for the sorption sites of Jeju scoria, while the removal increased at a high pH condition due to hydroxide precipitation.

  • PDF

Analytical Method for Moisture Vaporization of Concrete under High Temperature (고온조건에서 콘크리트의 수분증발 해석기법)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.538-545
    • /
    • 2017
  • Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the concrete members at fire is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions

  • Kalal, Hossein Sid;Khanchi, Ali Reza;Nejatlabbaf, Mojtaba;Almasian, Mohammad Reza;Saberyan, Kamal;Taghiof, Mohammad
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.301-315
    • /
    • 2017
  • An Amberlite XAD-4 resin impregnated with di(2-ethylhexyl)phosphoric acid was prepared and its adsorption-desorption behaviors with Sr(II) ions under various conditions was examined. The resin was characterized by fourier transform infrared and thermal analysis techniques. The effects contact time, temperature, pH, interfering ions and eluants were studied. Results showed that adsorption of Sr (II) well fitted with pseudo-second-order kinetic model. The equilibrium adsorption data of Sr (II) on the impregnated resin were analyzed by Jossens, Weber-van Vliet, Redlich-Peterson and Fritz-Schlunder models to find out desirable equilibrium condition. Among them, the Fritz-Schlunder model best fitted to the experimental data. The maximum sorption capacity of impregnated resin amounted to 0.45 mg/ g at pH 8.0 and $20^{\circ}C$.

DRYING CHARACTERISTINCS OF THIN-LAYERS OF WHEAT AND BARLEY AT NEAR-AMBIENT TEMPERATURE

  • Sun, Da-Wen;J.J.Woods
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.896-905
    • /
    • 1993
  • Thin-layers of wheat and barley are dried at near-ambient temperatures(3.5$^{\circ}C$ -5$0^{\circ}C$) in order to obtain the intrinsic drying data. The well established apparatus was modified to enable it to record all the sample weight data in still air by using a purpose -built automatically controlled sliding valve. The air could be diverted in less than 0.5seconds and a 7 second period was required to attain a steady weight reading. With this apparatus, very smooth drying curves were obtained. The data of sample weight , drying temperature and dew point temperature wee recorded continuously . The drying process was terminated when the moisture content change in 24 hours was less than 0.004 d.b. This was achieved by drying a sample for about a week . The final points were recorded as the dynamic equilibrium moisture content(EMC). The drying data were than fitted to the exponential Newton model and the dynamic EMC data were fitted to the Modified-Chung-Pfost Model . All the fitted parameters are given and comparison is made with previous published data. The comparisons who that the current drying constants are lower than the previous data, the dynamic EMC data obtained for wheat and barely agree with the previous data. The results show that to obtain the drying constant in the exponential Newton model, adequate drying time is necessary.

  • PDF

Prediction of Organic Acid Chromatogram in High Performance Ion Chromatography (고성능 이온 크로마토그래피에서 유기산의 크로마토그램 예측 연구)

  • 원혜진;한선호;박양순;조기수;김인호
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • In order to predict the chromatogram for organic acid in ion chromatography, Langmuir isotherm parameters were obtained by Retention Time Method (RTM) and moment method. Ion chromatography analysis for formic acid was performed and compared with theoretically predicted profiles under isocratic condition. Band profiles were estimated with the equilibrium-dispersive model of chromatography using a PDEsolver Macsyma . The relationship between the characteristics of chromatogram and the variable operating condition in chromatography such as the flow rate, ionic strength and injection volume was studied. Satisfactory agreement was observed between the experimental and the estimated chromatograms with parameters obtained form the moment method.

  • PDF