• Title/Summary/Keyword: equilibrium concentration

Search Result 810, Processing Time 0.023 seconds

Anionic Polymerization of 2-Pyrrolidone by $SO_2/KOH$ Catalyst ($SO_2/KOH$ 촉매에 의한 2-Pyrrolidone의 음이온 중합에 관한 연구)

  • Huh, Dong-Sub;Lee, Jung-Keun
    • Elastomers and Composites
    • /
    • v.14 no.4
    • /
    • pp.231-252
    • /
    • 1979
  • Polymerization of 2-pyrrolidone was carried out through anionic mechanism using $SO_2/KOH$ as catalyst. The effects of KOH concentration, $SO_2/KOH$ mole ratio and temperature on polymerization were investigated. The conversion and viscosity of polymers were measured at various polymerization conditions. It was observed that as the concentration of KOH was increased, equilibrium conversion was also increased. It was, however, found that after the concentration of KOH was reached above 8 mole percent, the equilibrium conversion was decreased. The highest rate of polymerization and maximum conversion were obtained when $SO_2/KOH$ mole ratio was around 0.5. It was also found that the rate of polymerization and the equilibrium conversion were higher at $50^{\circ}C$. than at $30^{\circ}C$. but the viscosity of polymer solution at $50^{\circ}C$. was not so high as expected. The rate constant, $K_p$ of polymerization, was determined by least square method: the value of $K_p$ was observed as 16 liter/mole hour at $50^{\circ}C$. and 2.6 liter/mole hour at $30^{\circ}C$., respectively. The mechanism of polymerization was also discussed.

  • PDF

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Biosorption of Rhodamine B onto Waste Activated Sludge: Equilibrium and Kinetic Modelling (폐 활성슬러지를 이용한 Rhodamine B의 생체흡착:흡착평혀여 및 흡착속도 모델링)

  • Lee Chang-Han;Ahn Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.881-888
    • /
    • 2005
  • The biosorption of dye, Rhodamine B(Rh-B), onto waste activated sludge was investigated. The biosorption capacity and contact time were shown as a simulation of dye adsorption equilibrium and kinetics models. We observed that biosorption of Rh-B occurred rapidly less than 4 hr. These experimental data could be better fitted by a pseudo-second-order rate equation than a pseudo-first-order rate equation. The equilibrium dependence between biosorption capacity and initial concentration of Rh-B was estimated and it was found that the equilibrium data of biosorption were fitted by four kinds of model such as Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan model. The average percentage errors, $\varepsilon(\%)$, observed between experimental and predicted values by above each model were $21.19\%,\;9.97\%,\;10.10\%\;and\;11.76\%$, respectively, indicating that Freundlich and Redlich-Peterson model could be fitted more accrately than other models.

A Study on Transport Characteristics of Fe in Soil (토양 내 철의 이동특성에 관한 연구)

  • Cho, Ki-Chul;Lee, Kyeong-Ho;Choung, Young-Heon;Cho, Sang-Won;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1043-1051
    • /
    • 2005
  • In this stduy, adsorption and transport characteristics of Fe in the soil were investigated using convection-dispersion local equilibrium sorption model and two-site non-equilibrium sorption model. In batch experiments with different Fe concentration, characteristics of Fe adsorption was investigated using Freundlich and linear isotherm. Column experiments with different flow rate, organic matter content md Fe concentration were also carried out. We measured Fe concentrations in injection-liquid and in effluent, and then applied them to CXTFIT program. As a result of column experiments, some parameters(D, R, ${\beta}$, ${\omega}$) used in two-site non-equilibrium adsorption model were obtained. Characteristics of Fe transport were analyzed using the parameters(D, R, ${\beta}$, ${\omega}$) obtained from the CXTFIT program, Consequently, characteristics of Fe transport in the soil were predicted through two-site non-equilibrium adsorption model.

Estimation of Optimum PM2.5 Ionic Concentration Control Strategy for Reducing Fine Particle Mass Concentrations in Seoul (서울시 초미세먼지 질량농도 저감을 위한 입자 내 이온성분 최적감축방법 예측)

  • Kim, Jung Youn;Lee, Ji Won;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.151-164
    • /
    • 2010
  • Inorganic ions and water are major components of ambient fine particles. Water content in fine particles is mainly determined by ambient meteorological conditions and the concentrations of hygroscopic species such as inorganic ions. Thus, to reduce fine particle mass concentration, it is important to accurately estimate the relationship between water content and the concentration of ions in fine particles. Water content in fine particles in Seoul are estimated by using a gas/particle equilibrium model to understand the characteristics of fine particle mass concentration. In addition, sensitivity of fine particle mass concentration to the changes of particulate ionic species (sulfate, nitrate, and ammonium) is estimated. It was found that water content in Seoul is mostly determined by the concentrations of the hygroscopic ionic species, especially, sulfate and ammonium, and ambient relative humidity.

Seasonal Variation of Nitrate in the Greater Seoul Area Using a Photochemical Box Model and a Gas/Aerosol Equilibrium Model (광화학 상자모델과 기체/입자 평형모델을 이용한 서울ㆍ수도권의 계절별 질산염 농도 변화)

  • Lee S.;Ghim Y. S;Kim Y. P;Kim J. Y
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.729-738
    • /
    • 2004
  • Seasonal variation of major inorganic ions in the greater Seoul area was estimated using a photochemical box model and a gas/aerosol equilibrium model with emphasis on semi -volatile nitrate. Pollutant emission was determined by season by comparing the predicted concentration with the measurement one obtained for a year from the late 1996. The results showed that particulate nitrate was the highest in summer but about 40% of total nitrate was present in the gas phase. This was due to volatilization at high temperature since ammonia was sufficient to neutralize all nitrate regardless of season. As relative humidity in summer was higher than the deliquescence point, particulate ion concentration with water was two times higher than that in other season. So called ‘NOx disbenefit’ indicating increase in particulate ion concentration with decrease in NOx emission was evident especially in winter.

Study of atmosphere parameters of the IVV-2M reactor hall

  • M.E. Vasyanovich;M.V. Zhukovsky;E.I. Nazarov;I.M. Russkikh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3935-3939
    • /
    • 2023
  • The paper presents the results of a study of radioactive noble gases and from decay products in the atmosphere of the reactor hall of the research nuclear reactor IVV-2M. The distribution of short-lived 88Rb and 138Cs activity by sizes of aerosol particles was measured in the range of 0.5-1000 nm. It is shown that radioactive aerosols are characterized by three main modes with AMTD 2-3 nm, 7-15 nm and 400 nm. About 70% of aerosol activity is due to 88Rb. The equilibrium factor between 88Kr and 88Rb is 0.2 ± 0.1. The total concentration of aerosols particles was measured using an aerosol diffusion spectrometer. The value of unattached fraction of radioactive aerosols in the atmosphere of reactor hall IVV2M was f = 0.15-0.25 at the average total aerosol particles concentration from 20,000 cm3 to 53,000 cm3.

Assessment of Sorption Behavior on Slag Against Heavy Metals (카드뮴, 납, 구리에 대한 슬래그의 흡착특성평가)

  • Lee, Gwang-Hun;Choi, Sung-Dae;Chung, Jae-Shik;Park, Jun-Boum;Nam, Kyoung-Phile
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.17-25
    • /
    • 2008
  • Permeable reactive barriers (PRBs) technology can be applied to contaminated groundwater remediation. It is necessary to select adequate reactive material according to contaminant characterization. In groundwater. In this research, the reaction between reactive material and heavy metal contaminants was estimated through batch test. Reactive material was slag, which has been produced in Gwangyang power plant, and heavy metal contaminants were cadmium, lead and copper. Batch test consisted of two testes: 1) sorption equilibrium test and 2) sorption kinetic test. Sorption equilibrium test was performed for estimating slag sorption capacity against contaminants. And sorption kinetic test was performed for slag sorption rate with contaminants species, contaminants initial concentration and sulfate. Sorption capacity and sorption rate were affected by contaminant species. Sorption rate increased with increasing initial concentration in lead and copper but decreased with increasing initial concentration in cadmium. Sorption rate increased in existing sulfate. In low concentration, film diffusion was domain mechanism, and in high concentration, particle diffusion was domain mechanism.

ANALYSIS OF EQUILIBRIUM METHODS FOR THE COMPUTATIONAL MODEL OF THE MARK-IV ELECTR OREFINER

  • Cumberland, Riley;Hoover, Robert;Phongikaroon, Supathorn;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.6
    • /
    • pp.547-556
    • /
    • 2011
  • Two computational methods for determining equilibrium states for the Mark-IV electrorefiner (ER) have been assessed to improve the current computational electrorefiner model developed at University of Idaho. Both methods were validated against measured data to better understand their effects on the calculation of the equilibrium compositions in the ER. In addition, a sensitivity study was performed on the effect of specific unknown activity coefficients-including sodium in molten cadmium, zirconium in molten cadmium, and sodium chloride in molten LiCl-KCl. Both computational methods produced identical results, which stayed within the 95% confidence interval of the experimental data. Furthermore, sensitivity to unavailable activity coefficients was found to be low (a change in concentration of less than 3 ppm).

Estimation of the Removal Capacity for Cadmium and Calculation of Minimum Reaction Time of BOF Slag (제강슬래그의 카드뮴 제거능 평가 및 필요반응시간 결정)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.5-12
    • /
    • 2011
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The kinetic sorption test was performed by changing the initial concentration and pH. Using pseudo-second-order model, the reactivity of furnace slag was quantitatively analyzed. Equilibrium removal amount ($q_e$) of furnace slag increased and rate constant ($k_2$) decreased with the increase of initial cadmium concentration. With the increase of pH, the equilibrium removal amount ($q_e$) and rate constant ($k_2$) increased in the same initial concentration. Required retention time was related to the inverse of the product of the equilibrium removal amount ($q_e$) multiplied by rate constant ($k_2$). The required retention time could be used to design the length of reactive column.