• 제목/요약/키워드: equations of motion

Search Result 2,339, Processing Time 0.032 seconds

Free vibration of FGM plates with porosity by a shear deformation theory with four variables

  • Yousfi, Mahfoud;Atmane, Hassen Ait;Meradjah, Mustapha;Tounsi, Abdelouahed;Bennai, Riadh
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.353-368
    • /
    • 2018
  • In this work, a high order hyperbolic shear deformation theory with four variables is presented to study the vibratory behavior of functionally graduated plates. The field of displacement of the theory used in this work is introduced indeterminate integral variables. In addition, the effect of porosity is studied. It is assumed that the material characteristics of the porous FGM plate, varies continuously in the direction of thickness as a function of the power law model in terms of volume fractions of constituents taken into account the homogeneous distribution of porosity. The equations of motion are obtained using the principle of virtual work. An analytical solution of the Navier type for free vibration analysis is obtained for a FGM plate for simply supported boundary conditions. A comparison of the results obtained with those of the literature is made to verify the accuracy and efficiency of the present theory. It can be concluded from his results that the current theory is not only accurate but also simple for the presentation of the response of free vibration and the effect of porosity on the latter.

On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT

  • Bennai, Riadh;Fourn, Hocine;Nebab, Mokhtar;Atmane, Redhwane Ait;Mellal, Fatma;Atmane, Hassen Ait;Benadouda, Mourad;Touns, Abdelouahed
    • Advances in concrete construction
    • /
    • v.14 no.3
    • /
    • pp.169-183
    • /
    • 2022
  • In this article, vibrational behavior and wave propagation characteristics in (FG) functionally graded plates resting on Kerr foundation with three parameters is studied using a 2D dimensional (HSDT) higher shear deformation theory. The new 2D higher shear deformation theory has only four variables in field's displacement, which means has few numbers of unknowns compared with others theories. The shape function used in this theory satisfies the nullity conditions of the shear stresses on the two surfaces of the FG plate without using shear correction factors. The FG plates are considered to rest on the Kerr layer, which is interconnected with a Pasternak-Kerr shear layer. The FG plate is materially inhomogeneous. The material properties are supposed to vary smoothly according to the thickness of the plate by a Voigt's power mixing law of the volume fraction. The equations of motion due to the dynamics of the plate resting on a three-parameter foundation are derived using the principle of minimization of energies; which are then solved analytically by the Navier technique to find the vibratory characteristics of a simply supported plate, and the wave propagation results are derived by using the dispersion relations. Perceivable numerical results are fulfilled to evaluate the vibratory and the wave propagation characteristics in functionally graded plates and some parameters such wave number, thickness ratio, power index and foundation parameters are discussed in detail.

Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip

  • Zhou, Wangbao;Jiang, Lizhong;Huang, Zhi;Li, Shujin
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1023-1042
    • /
    • 2016
  • Based on Hamilton's principle, the flexural vibration differential equations and boundary conditions of the steel-concrete composite beam (SCCB) with comprehensive consideration of the influences of the shear deformation, interface slip and longitudinal inertia of motion were derived. The analytical natural frequencies of flexural vibration were compared with available results previously observed by the experiments, the results calculated by the FE model and the other similar beam theories available in the open literatures. The comparison results showed that, the calculation results of the analytical and Timoshenko models had a good agreement with the results of the experimental test and FE model. Finally, the influences of shear deformation and interface slip on the flexural natural frequencies of the SCCB were discussed. The shear deformation effect increases with the increase of the mode orders of flexural natural vibration, and the flexural natural frequencies of the higher mode orders ignoring the influence of shear deformations effect would be overestimated. The interface slip effect decrease with the increase of the mode orders of flexural natural vibration, and the influence of the interface slip effect on flexural natural frequencies of the low mode orders is significant. The influence of the degree of shear connection on shear deformation effect is insignificant, and the low order modes of flexural natural vibration are mainly composed of the rotational displacement of cross sections.

Study on stability and free vibration behavior of porous FGM beams

  • Bennai, Riadh;Atmane, Redhwane Ait;Bernard, Fabrice;Nebab, Mokhtar;Mahmoudi, Noureddine;Atmane, Hassen Ait;Aldosari, Salem Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.67-82
    • /
    • 2022
  • In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

Influence of Spring Constant at Fixed End on Stability of Beck's Column with Tip Mass (固定端 의 스프링 상수 가 末端質量을 가진 Beck′s Column 의 安定性 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.606-612
    • /
    • 1985
  • On the stability of the Beck's column with a tip mass, the influence of the characteristics of the springs at the fixed end of the column are studied. The equations of motion and boundary conditions of this system are established by using the Hamiton's principle. On the evaluation of the stability of the column, t he effect of the shear deformation and rotatory inertial is considered in calculation. For the maintenance of the stability of the column, it is proved that the constant of the translational spring at the fixed end must be very large while th magnitude of the constant of the rotational spring at the fixed end has no effect. When the constants of the springs at the fixed end are small, it is also proved that the influence of the moment of inertial of the tip mass on the stability of the column are decreased and for the translational spring the degree of the decrease is more and more. Therefore it is found that the characteristics of the springs at the fixed end are very effective elements for the stability of the column when the columns subjected to a compressive follower force are designed.

Warping and porosity effects on the mechanical response of FG-Beams on non-homogeneous foundations via a Quasi-3D HSDT

  • Mokhtar Nebab;Hassen Ait Atmane;Riadh Bennai;Mouloud Dahmane
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.83-96
    • /
    • 2024
  • This paper suggests an analytical approach to investigate the free vibration and stability of functionally graded (FG) beams with both perfect and imperfect characteristics using a quasi-3D higher-order shear deformation theory (HSDT) with stretching effect. The study specifically focuses on FG beams resting on variable elastic foundations. In contrast to other shear deformation theories, this particular theory employs only four unknown functions instead of five. Moreover, this theory satisfies the boundary conditions of zero tension on the beam surfaces and facilitates hyperbolic distributions of transverse shear stresses without the necessity of shear correction factors. The elastic medium in consideration assumes the presence of two parameters, specifically Winkler-Pasternak foundations. The Winkler parameter exhibits variable variations in the longitudinal direction, including linear, parabolic, sinusoidal, cosine, exponential, and uniform, while the Pasternak parameter remains constant. The effective material characteristics of the functionally graded (FG) beam are assumed to follow a straightforward power-law distribution along the thickness direction. Additionally, the investigation of porosity includes the consideration of four different types of porosity distribution patterns, allowing for a comprehensive examination of its influence on the behavior of the beam. Using the virtual work principle, equations of motion are derived and solved analytically using Navier's method for simply supported FG beams. The accuracy is verified through comparisons with literature results. Parametric studies explore the impact of different parameters on free vibration and buckling behavior, demonstrating the theory's correctness and simplicity.

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT

  • Boutaleb, Sabrina;Benrahou, Kouider Halim;Bakora, Ahmed;Algarni, Ali;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.191-208
    • /
    • 2019
  • In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton's principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

Combined influence of variable distribution models and boundary conditions on the thermodynamic behavior of FG sandwich plates lying on various elastic foundations

  • Djamel Eddine Lafi;Abdelhakim Bouhadra;Belgacem Mamen;Abderahmane Menasria;Mohamed Bourada;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.103-119
    • /
    • 2024
  • The present research investigates the thermodynamically bending behavior of FG sandwich plates, laying on the Winkler/Pasternak/Kerr foundation with various boundary conditions, subjected to harmonic thermal load varying through thickness. The supposed FG sandwich plate has three layers with a ceramic core. The constituents' volume fractions of the lower and upper faces vary gradually in the direction of the FG sandwich plate thickness. This variation is performed according to various models: a Power law, Trigonometric, Viola-Tornabene, and the Exponential model, while the core is constantly homogeneous. The displacement field considered in the current work contains integral terms and fewer unknowns than other theories in the literature. The corresponding equations of motion are derived based on Hamilton's principle. The impact of the distribution model, scheme, aspect ratio, side-to-thickness ratio, boundary conditions, and elastic foundations on thermodynamic bending are examined in this study. The deflections obtained for the sandwich plate without elastic foundations have the lowest values for all boundary conditions. In addition, the minimum deflection values are obtained for the exponential volume fraction law model. The sandwich plate's non-dimensional deflection increases as the aspect ratio increases for all distribution models.

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.