• Title/Summary/Keyword: equal area criterion

Search Result 32, Processing Time 0.022 seconds

A Study on the Out-of-Step Detection Algorithm using Frequency Deviation of the Voltage (전압의 주파수 편의를 이용한 동기탈조 검출 알고리즘에 관한 연구)

  • 소광훈;허정용;김철환
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • The protection against transient instability and consequent out-of-step condition is a major concern for the utility industry. Unstable system may cause serious damage to system elements such as generators and transmission lines. Therefore, out-of-step detection is essential to operate a system safely. The detection of out-of-step is generally based upon the rate of movement of the apparent impedance. However such relay monitors only the apparent impedance which may not be sufficient to correctly detect all forms of out-of-step and cannot cope with out-of-step for a more complex type of instability such as very fast power swing. This paper presents the out-of-step detection algorithm using voltage frequency deviation. The digital filters based on discrete Fourier transforms (DFT) to calculate the frequency of a sinusoid voltage are used, and the generator angle is estimated using the deviation of the calculated frequency component of the voltage. The proposed out-of-step algorithm is based on the assessment of a transient stability using equal area criterion. The proposed out-of-step algorithm is verified and tested by using EMTP MODELS.

A Fast Contingency Screening Algorithm for On-line Transient Security Assessment Based on Stability Index

  • Nam, Hae-Kon;Kim, Yong-Hak;Song, Sung-Geun;Kim, Yong-Gu
    • KIEE International Transactions on Power Engineering
    • /
    • v.2A no.4
    • /
    • pp.131-135
    • /
    • 2002
  • This paper describes a new ultra-fast contingency screening algorithm for on-line TSA without time simulation. All machines are represented in a classical model and the stability index is defined as the ratio between acceleration power during a fault and deceleration power after clearing the fault. Critical clustering of machines is done based on the stability index, and the power-angle curve of the critical machines is drawn assuming that the angles of the critical machines increase uniformly, while those of the non-critical ones remain constant. Finally, the critical clearing time (CCT) is computed using the power-angle curve. The proposed algorithm is tested on the KEPCO system comprised of 900-bus and 230-machines. The CCT values computed with the screening algorithm are in good agreement with those computed using the detailed model and the SIME method. The computation time for screening about 270 contingencies is 17 seconds with 1.2 GHz PC.

A Study on Using PSM Policy for the Serious Accident Prevention of Construction (건설업 중대재해 예방을 위한 PSM 제도 활용에 관한 연구)

  • 정범모;양광모;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.1-14
    • /
    • 2002
  • As domestic buildings have been large-scaled, diversified and high-rise, there have been a consistent demand for design, development of construction technology and accident prevention activity as well as quality enhancement. In spite of governmental and related institutions' efforts for reducing national losses which come from numerous accidents, there have been endless small and large accidents on the construction site and thus, it is urgent to conduct empirical researches in this area. Currently safety supervision system in construction industry has enforced harm and danger prevention planning system, however it merely stick to other existing materials. In addition, it is difficult to put it into practice in that it requires bearing too much burden to draw out the planning itself in a case of large construction work. Consequently in this paper we select evaluation criteria by construction progress, classify into several categories, and regard potential danger which often occurs, as a evaluation criterion. Further step is to allow workers or collaborated companies to express their expert opinions or experiences and to encourage quality and process control and autonomous safety control by applying PSM method. The reason why PSM method should be quantitative and substantial progress is because it contributes Korean constructing companies to enhancing their safety control ability and to taking an equal stance just like developed countries,' thereby strengthening there competitive edges. Boost of safety control system by PSM method will make an enormous contribution to preventing construction accidents on the site by establishing and securing an autonomous safety control system.

A Novel SIME Configuration Scheme Correlating Generator Tripping for Transient Stability Assessment

  • Oh, Seung-Chan;Lee, Hwan-Ik;Lee, Yun-Hwan;Lee, Byong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1798-1806
    • /
    • 2018
  • When a contingency occurs in a large transmission route in a power system, it can generate various instabilities that may lead to a power system blackout. In particular, transient instability in a power system needs to be immediately addressed, and preventive measures should be in place prior to fault occurrence. Measures to achieve transient stability include system reinforcement, power generation restriction, and generator tripping. Because the interpretation of transient stability is a time domain simulation, it is difficult to determine the efficacy of proposed countermeasures using only simple simulation results. Therefore, several methods to quantify transient stability have been introduced. Among them, the single machine equivalent (SIME) method based on the equal area criterion (EAC) can quantify the degree of instability by calculating the residual acceleration energy of a generator. However, method for generator tripping effect evaluation does not have been established. In this study, we propose a method to evaluate the effect of generator tripping on transient stability that is based on the SIME method. For this purpose, the measures that reflect generator tripping in the SIME calculation are reviewed. Simulation results obtained by applying the proposed method to the IEEE 39-bus system and KEPCO system are then presented.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a Trajectory of Complex Power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kim Chul-Hwan;Heo Jeong-Yong;Kwon O-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.217-225
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now. Most common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of-step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm which is based on the complex power and the estimated mechanical power, is presented. This algorithm may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a trajectory of Complex power (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘)

  • Kwon, O.S.;Kim, C.H.;Park, N.O.;Chai, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.313-315
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now Mo,;t common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of- step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm, which is based on the complex Power and the estimated mechanical power, is presented. This algorithm, may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

  • PDF

Damage zone induced by quasi-static gas pressure during blasting (준정적인 발파 가스압에 의한 암반의 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1409-1416
    • /
    • 2010
  • It is essential to predict a blasting-induced excavation damage zone (EDZ) beyond the proposed excavation line of a tunnel because the unwanted damage area requires extra support system for tunnel safety. Complicated blasting process which may hinder a proper characterization of the damage zone can be effectively represented by two loading mechanisms. The one is a dynamic impulsive load generating stress waves outwards immediately after detonation. The other is a gas pressure that remains for a relatively long time. Since the gas pressure reopens up the arrested cracks and continues to extend some cracks, it contributes to the final formation of EDZ induced by blasting. This paper presents the simple method to evaluate EDZ induced by gas pressure during blasting in rock. The EDZ is characterized by analyzing crack propagation from the blasthole. To do this, a model of the blasthole with a number of radial cracks of equal length in an infinite elastic plane is considered. In this model, the crack propagation is simulated by using three conditions, the crack propagation criterion, the mass conservation of the gas, and the adiabatic condition. As a result, the stress intensity factor of the crack generally decreases as crack propagates from the blasthole so that the length of the crack is determined. In addition, the effect of rock properties, initial number of cracks, and the adiabatic exponent are investigated.

  • PDF

A new method for calculating quantiles of grouped data based on the frequency polygon (집단화된 통계자료의 도수다각형에 근거한 새로운 분위수 계산법)

  • Kim, Hyuk Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.383-393
    • /
    • 2017
  • When we deal with grouped statistical data, it is desirable to use a calculation method that gives as close value to the true value of a statistic as possible. In this paper, we suggested a new method to calculate the quantiles of grouped data. The main idea of the suggested method is calculating the data values by partitioning the pentagons, that correspond to the class intervals in the frequency polygon drawn according to the histogram, into parts with equal area. We compared this method with existing methods through simulations using some datasets from introductory statistics textbooks. In the simulation study, we simulated as many data values as given in each class interval using the inverse transform method, on the basis of the distribution that has the shape given by the frequency polygon. Using the sum of squares of differences from quantiles of the simulated data as a criterion, the suggested method was found to have better performance than existing methods for almost all quartiles and deciles.

Numerical Implementation of Representative Mobile Phone Models for Epidemiological Studies

  • Lee, Ae-Kyoung;Yoon, Yonghyun;Lee, Sooyung;Lee, Byungje;Hong, Seon-Eui;Choi, Hyung-Do;Cardis, Elisabeth
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.2
    • /
    • pp.87-99
    • /
    • 2016
  • This paper describes an implementation method and the results of numerical mobile phone models representing real phone models that have been released on the Korean market since 2002. The aim is to estimate the electromagnetic absorption in the human brain for case-control studies to investigate health risks related to mobile phone use. Specific absorption rate (SAR) compliance test reports about commercial phone models were collected and classified in terms of elements such as the external body shape, the antenna, and the frequency band. The design criteria of a numerical phone model representing each type of phone group are as follows. The outer dimensions of the phone body are equal to the average dimensions of all commercial models with the same shape. The distance and direction of the maximum SAR from the earpiece and the area above -3 dB of the maximum SAR are fitted to achieve the average obtained by measuring the SAR distributions of the corresponding commercial models in a flat phantom. Spatial peak 1-g SAR values in the cheek and tilt positions against the specific anthropomorphic mannequin phantom agree with average data on all of the same type of commercial models. Second criterion was applied to only a few types of models because not many commercial models were available. The results show that, with the exception of one model, the implemented numerical phone models meet criteria within 30%.

A Study On Development of Safety Inspection Evaluation Method in the Construction Using PSM Method (PSM 제도를 활용한 건설업 안전점검 평가방법 개발에 관한 연구)

  • 양광모;전현정;강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.3
    • /
    • pp.24-30
    • /
    • 2003
  • As domestic buildings have been large-scaled, diversified and high-rise, there have been a consistent demand for design, development of construction technology and accident prevention activity as well as quality enhancement. In spite of governmental and related institutions' efforts for reducing national losses which come from numerous accidents, there have been endless small and large accidents on the construction site and thus, it is urgent to conduct empirical researches in this area. Currently safety supervision system in construction industry has enforced harm and danger prevention planning system, however it merely stick to other existing materials. In addition, it is difficult to put it into practice in that it requires bearing too much burden to draw out the planning itself in a case of large construction work. Consequently in this paper we select evaluation criteria by construction progress, classify into several categories, and regard potential danger which often occurs, as a evaluation criterion. Further step is to allow workers or collaborated companies to express their expert opinions or experiences and to encourage quality and process control and autonomous safety control by applying PSM(Process Safety Management) method using AHP(Analytic Hierarchy Process) and to development of PSM evaluation method in the construction. The reason why PSM method should be quantitative and substantial progress is because it contributes Korean constructing companies to enhancing their safety control ability and to taking an equal stance just like developed countries, thereby strengthening their competitive edges. Boost of safety control system by PSM method could make an enormous contribution to preventing construction accidents on the site by establishing and securing an autonomous safety control system.