• Title/Summary/Keyword: epr

Search Result 439, Processing Time 0.026 seconds

NMR Studies of Ni-binding Luteinizing Hormone Releasing Hormone

  • Kim, Jin;Won, Ho-Shik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.143-153
    • /
    • 2009
  • Luteinizing Hormone Releasing Hormone (LHRH) is composed of 10 amino acids, and is best known as a neurotransmitter. Because of the 80% homology in animals, much more concerns have focused on the substances that have similar functions or can control LHRH. Ni, Cu-LHRH complexes were synthesized. The degree of complexation was monitored by $^1H,\;^{13}C$-NMR chemical shifts, and final products were identified by ESI-Mass spectrum. Solution-state structure determination of Ni-LHRH complex was accomplished by using NMR results and NMR-based distance geometry (DG). Interproton distances from nuclear Overhauser effect spectroscopy (NOESY) were utilized for the molecular structure determination. Results were compared with previous structures obtained from energy minimization and other spectroscopic methods. Structure obtained in this study has a cyclic conformation which is similar to that of energy minimized, and exhibits a specific a-helical turn with residue numbers (2~7) out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni, Cu-LHRH complexes exhibit that Ni-LHRH complex has same binding sites with the 4-coordination mode as in Zn-LHRH complex.

Synthesis and Characterization of Thallium (Ⅲ) Complexes with Tetracyanoquinodimethane, TI$(TCNQ)_3$ and $TICI_2(TCNQ)_{2.5}$

  • 김미경;김영인;문성배;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.424-428
    • /
    • 1996
  • TlCl2(TCNQ)2.5 and Tl(TCNQ)3 were obtained from the reaction of LiTCNQ (TCNQ=tetracyanoquinodimethane) and TlX3 (X=Cl and NO3). These compounds were characterized by spectroscopic(IR, UV, EPR), electrochemical methods, and electrical conductivity measurements. Thermal analysis (TG, DSC) was also conducted. The room temperature electrical conductivities of these compounds are in the range of semiconductors. Spectroscopic studies indicate that Tl(TCNQ)3 has fully ionized TCNQ- ions in a form of simple salt, whereas TlCl2(TCNQ)2.5 is consisted of TCNQ- and TCNQ0 as a complex salt. EPR values of TCNQ- radical anion are 1.999 in both compounds and the signal attributable to metal ion is not observed, suggesting that any unpaired electrons are localized on TCNQ radicals, and metal atoms have diamagnetic state. Ligand decomposition and reduction process are simultaneously progressed in both compounds above at 200 ℃. The endothermic activation energy of TlCl2(TCNQ)2.5 is shown somewhat larger than that of Tl(TCNQ)3, it may be due to Tl-Cl bond strength. The mid-peak potentials of these compounds are very similar to those of TCNQ and the values of Epa and Epc are almost equal to 1. The wave of thallium ion is not detected in cyclic voltammogram, hence the redox processes of the complexes might be mainly localized to the TCNQ ligand rather than thallium ion.

Tetrathiafulvalene (TTF) Charge Transfer Compounds with Some Heavier Transition Metal (Au, Pt, Ir, Os) Chlorides

  • 정찬규;김영인;최성낙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1061-1065
    • /
    • 1996
  • The charge transfer compounds of tetrathiafulvalene (TTF) with the general formula of (TTF)mMCln, (M=Au, Pt, Ir, Os) were prepared by the direct reaction using excess HAuCl4·3H2O, H2PtCl6·xH2O, H2IrCl6·xH2O and H2OsCl6 respectively. The powdered electrical conductivities (σrt) at room temperature are given as follows; (TTF)3AuCl2, 4.53×10-3; (TTF)3.5AuCl2, 6.37×10-3; (TTF)3PtCl4, 5.51×10-4; (TTF)2IrCl4, 2.40×10-5; (TTF)OsCl4·1/2C2H5OH, 4.46×10-7 Scm-1. Magnetic susceptibility, electronic (UV-Vis.), vibrational (IR) and EPR spectroscopic evidences indicate that there is incomplete charge transfer from the TTF donor to gold, platinum, and iridium respectively, and that there is essentially complete charge transfer to osmium, thereby resulting a relatively low electrical conductivity in osmium compound. The EPR and magnetic susceptibility data reflect that the metals are in diamagnetic Au(Ⅰ), Pt(Ⅱ), Ir(Ⅲ), and Os(Ⅱ) oxidation states, and the odd electrons are extensively delocalized over the TTF lattices in each compound.

Dioxygen Binding to the Singly Alkoxo-Bridged Diferrous Complex: Properties of [$Fe^{Ⅱ}_2$(N-Et-HPTB)$Cl_2$]$BPh_4$

  • 김은석;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1127-1131
    • /
    • 1996
  • [FeⅡ2(N-Et-HPTB)Cl2]BPh4(1), where N-Et-HPTB is the anion of N,N,N',N'-tetrakis(N-ethyl-2-benzimidazolylmethyl)-2-hydroxy-l,3-diaminopropane, has been synthesized to model dioxygen binding to the diferrous centers of proteins. 1 has a singly bridged structure with a μ-alkoxo of N-Et-HPTB and contains two five-coordinate iron(Ⅱ) centers with two chloride ligands as exogenous ligands. 1 exhibits an electronic spectrum with a λmax at 336 nm in acetone. 1 in acetone exhibits no EPR signal at 4 K, indicating diiron(Ⅱ) centers are antiferromagnetically coupled. Exposure of acetone solution of 1 to O2 at -90 ℃ affords an intense blue color intermediate showing a broad band at 586 nm. This absorption maximum of the dioxygen adduct(1/O2) was found in the same region of μ-l,2-peroxo diiron(Ⅲ) intermediates in the related complexes with pendant pyridine or benzimidazole ligand systems. However, this blue intermediate exhibits EPR signals at g = 1.93, 1.76, and 1.59 at 4 K. These g values are characteristic of S = 1/2 system derived from an antiferromagnetically coupled high-spin Fe(Ⅱ)Fe(Ⅲ) units. 1 is the unique example of a (μ-alkoxo)diferrous complex which can bind dioxygen and form a metastable mixed-valence intermediate. At ambient temperature, most of 1/O2 intermediate decays to form a diamagnetic species. It suggests that the dacay reaction of the intermediate might be bimolecular, implying the formation of mixed-valence tetranuclear species in transition state.

A New Functional Model Complex of Extradiol-cleaving Catechol Dioxygenases: Properties and Reactivity of [$Fe^{II}$(BLPA)DBCH]BPh₄

  • Lim, Ji H.;Park, Tae H.;이호진;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1428-1432
    • /
    • 1999
  • [Fe$^{II}$(BLPA)DBCH]BPh₄ (1), a new functional model for the extradiol-cleaving catechol dioxygenases, has been synthesized, where BLPA is bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and DBCH is 3,5-di-tert-butylcatecholate monoanion. ¹H NMR and EPR studies confirm that 1 has a high-spin Fe(II) (S = 2) center. The electronic spectrum of 1 exhibits one absorption band at 386 nm, showing the yellow color of the typical [Fe$^{II}$(BLPA)] complex. Upon exposure to O₂, 1 is converted to an intense blue species within a minute. This blue species exhibits two intense bands at 586 and 960 nm and EPR signals at g = 5.5 and 8.0 corresponding to the high-spin Fe(III) complex (S = 5/2, E/D = 0.11). This blue complex further reacts with O₂ to be converted to (μ-oxo)Fe$^{III}_2$ complex within a few hours. Interestingly, 1 affords intradiol cleavage (65%) and extradiol cleavage (20%) products after the oxygenation. It can be suggested that 1 undergoes two different oxygenation pathways. The one takes the substrate activation mechanism proposed for the intradiol cleavage products after the oxidation of the $Fe^II\;to\;Fe^{III}$. The other involves the direct attack of O₂ to $Fe^{II}$ center, forming the $Fe^{III}$-superoxo intermediate which can give rise to the extradiol cleavage products. 1 is the first functional Fe(II) complex for extradiol-cleaving dioxygenases giving extradiol cleavage products.

The Effects of Dietary Energy/Protein Ratio on Oxygen Consumption, Ammonia Nitrogen Excretion and Body Composition in Juvenile Rockfish, Sebastes schlegeli (조피볼락(Sebastes schlegelii)치어의 산소소비, 암모니아 질소배설 및 체조성에 미치는 사료내 에너지/단백질비의 영향)

  • KIM Chang-Han;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.412-420
    • /
    • 1995
  • Oxygen consumption (OC), ammonia nitrogen (AN ) excretion and body composition were measured to study the effects of energy/protein ratio (EPR) on the utilization of protein and energy in juvenile rockfish, Sebastes schiegeli. Juvenile rockfish were divided into three groups that they fed three isocaloric diets (3,5kcal/g) containing 30 (I), 40 (II) or $50\%$ crude protein (III). EPR of the three experimental diets were 11.5 (I), 8.7 (II) and 7.0kcal/g III), respectively. Juvenile rockfish (wet wt. 2.9-3.1g) were cultured in 501 aquaria with the constant environmental condition of $20-24^{\circ}C$ water temperature and $34\%o$ salinity. For 24 hr after feeding the diets, juvenile rockfish fed diet III had a higher OC than did the fish from groups fed diets I and II, and average OC of the fish fed diets I, II and III were $0,93\pm0.02^a,\;0.92\pm0.02^a\;and\;1.03\pm0.03^bml\;O_2/g/h$, respectively. AN responses of juvenile rockfish to increasing levels of dietary protein (decreasing dietary EPR) were significantly different among three groups in which dietary protein at elevated levels increased the excretion of AN for 24 hr after feeding the diets. Average AN excretion of the fish fed diets I, II and III were $9.14\pm0.39^a,\;12.41\pm 0.53^a\;and\;14.89\pm0.55^c\;{\mu}g\;N/g/h$ respectively. The body protein content of the fish fed diet II for 59 days was significantly higher than that of the fish fed the other diets. But, there were no significant differences between three groups in body lipid, carbohydrate and ash contents. These results indicate that EPR of 9.7kcal/g (diet II) could be a optimum EPR in juvenile rockfish diet.

  • PDF

Geochemistry of Heavy Metals and Rare Earth Elements in Core Sediments from the Korea Deep-Sea Environmental Study (KODES)-96 Area, Northeast Equatorial Pacific (한국심해환경연구(KODES) 지역 주상 퇴적물중 금속 및 희토류원소의 지구화학적 특성)

  • Jung, Hoi-Soo;Park, Sung-Hyun;Kim, Dong-Seon;Choi, Man-Sik;Lee, Kyeong-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.125-137
    • /
    • 1997
  • To study the vertical variation of heavy metal and Rare Earth Element (REE) contents in deep-sea sediments, eighteen cores were sampled from the Korea Deep-sea Environmental Study (KODES)-96 area in the C-C zone (Clarion-Clipperton fracture zone), northeast equatorial Pacific. Sediment columns can be divided into three units based on sediment colors and geochemical characters; uppermost Unit I with brown color, middle Unit II with pale brown color and smaller Ni/Cu ratio than the ratio in Unit I, and lowermost Unit III with dark (brown) colors and higher contents of Mn, Ni, Cu, and REEs than those in Unit I and II. Unit II can be divided more into two layers of upper Unit IIa and lower Unit IIb. Unit IIb is characterized by high contents of Cu, 3+REEs (REEs except Ce), smectite, and severely deteriorated fossil tests. Unit III can also be divided into two units; upper Unit IIIa with dark brown color, and lower Unit IIIb with black color and enriched Mn and Fe. The KODES area was located near from the East Pacific Rise (EPR) When Unit III Sediments were deposited, considering the hiatus between Unit II and III (Quaternary-Tertiary boundary) and the spreading rate (10 cm/yr) and direction (north southern west) of the Pacific plate from the EPR. High contents of Mn and Fe in Unit IIIb may be related with hydrothermal influence from the EPR. Meanwhile, Unit IIb (about 2~3 Ma) and Unit III (11~30 Ma) layers were probably formed near (or under) the equatorial high productivity zone, and accordingly received a lot of organic materials. As a result, Cu and 3+REEs, closely associated with organic materials, are enriched in smectite and/or Ca-P composites (fish bone debrise, biogenic apatite) after decomposition and reprecipitation on the sea floor. Higher contents of Cu and 3+REEs in Unit IIb and III are suggested to be the result of abundant supply of organic substances in the equatorial high productivity zone.

  • PDF

Effects of a Pueraria lobata-root based combination supplement containing Rehmannia glutinosa and aerobic exercise on improvement of metabolic dysfunctions in ovariectomized rats (갱년기 모델 유도 흰 쥐에서 갈근과 지황 복합물 및 유산소 운동이 대사이상 개선에 미치는 영향)

  • Oh, Sang A;Ok, Hyang Mok;Kim, Hye Jin;Lee, Won Jun;Kwon, Oran
    • Journal of Nutrition and Health
    • /
    • v.48 no.2
    • /
    • pp.133-139
    • /
    • 2015
  • Purpose: There is a fair amount of evidence indicating that increased risk of obesity and insulin resistance is associated with postmenopausal state, but can be modulated by diet and exercise. In this study, we explored whether a Pueraria lobata root-based supplement containing Rehmannia glutinosa (PR) and/or aerobic treadmill exercise can modify the metabolic changes associated with estrogen deficiency. Methods: Seventy rats were randomly assigned to the following groups for 8 weeks (n=10 per group): SHAM, sham-operated; PR0, ovariectomized (OVX) control; PR200, OVX with PR200 mg/kg B.W; PR400, OVX with PR400 mg/kg B.W; EPR0, OVX with exercise; EPR200, OVX with exercise and PR200 mg/kg B.W; EPR400, OVX with exercise and PR400 mg/kg B.W. Results: OVX induced significant increases in body weight, food intake, fat mass, LDL-cholesterol, and fasting blood glucose, confirming induction of menopausal symptoms. PR supplementation or exercise significantly suppressed the above mentioned changes through different regulatory elements in adipose tissue: PR supplement upregulated adiponectin gene expression and aerobic exercise upregulated adiponectin and insulin receptor gene expression and a combination of PR supplement and aerobic exercise showed an additive effect on adiponectin gene expression. Conclusion: Taken together, the results of this study suggest that PR supplement has a potential to provide health benefits in OVX rats through leptin and adiponectin secretion. In addition, the data suggest that combination of exercise and PR would have additive effects on metabolic dysfunction associated with estrogen deficiency.

A Study on Improvement in Quality of the Paper Packaging Material and Structure -Focusing on EPR Items- (종이팩의 재질·구조 개선을 위한 연구 -EPR 대상 품목을 중심으로-)

  • Song, Kihyeon;Ko, Euisuk;Cho, Soohyun;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • The carton for liquid products are divided into 'gable top carton' and 'aseptic carton'. Currently, these packages are being recycled in the toilet tissue manufacturing process. The recycling of the carton aluminium laminate is the most important problem facing the recycling procedure of the carton packages due to the reduction in quality of recycled materials. The polymer structure with synthetic resins being used mainly in beverage packaging is also one of the important factors for the procedure for its recycling. The objective of this study was to investigate the package material and structure of the carton for liquid products through marketing research and suggest the supplementation in the work processes of production, use, and recycling. The results represent to improve the recycling profit and the quality of recycled materials when a laminated aluminium of carton for liquid products is replaced to the transparent polymer film. The improvement of the sorting and recycling process may help their recycling efficiencies. In addition, the limited use of synthetic resin molded packaging and increase of wood-pulp collection rate will provide the improvement of the recycling profit and the quality of recycled materials.

  • PDF