• Title/Summary/Keyword: epoxy ring

Search Result 68, Processing Time 0.022 seconds

DGEBA-MDA-SN-Hydroxyl Group System and Composites -Cure Kinetics and Mechanism in DGEBA/MDA/SN/HQ System- (DGEBA-MDA-SN-Hydroxyl계 복합재료의 제조 -DGEBA-MDA-SN-HQ계의 경화반응 속도론 및 메카니즘-)

  • Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.517-523
    • /
    • 1994
  • The effects of cure kinetics and mechanism of DGEBA(diglycidyl ether of bisphenol A)/MDA(4,4'-methylene dianiline) with SN(succinonitrile) and HQ(hydroquinone) as an additive and accelerator were investigated. Cure kinetics was evaluated by Kissinger equation and fractional-life method through DSC analysis. The activation energy has hydroxyl group as an accelerator, the activation energy and the starting cure-temperature were lower than those of DGEBA/MDA/SN system. Cure mechanism of those systems was investigated through FT-IR according to the various SN contents. The ratio was SN : HQ = 4 : 1. It has been known that the cure reactions of an epoxy-diamine system are composed of primary amine-epoxy reaction, secondary amino-epoxy reaction and epoxy-hydroxyl group reaction. But in DGEBA/MDA/SN system, primary amino-CN group reaction and CN group-hydroxyl group reaction were added to the above mentioned reactions. These reactions attributed to the long main chain and the low crossliking density. And in DGEBA/MDA/SN/HQ system, hydroxyl group of HQ formed a transition state with epoxide group and amime group and also opened the ring of the epoxide group rapidly, then amino-epoxy reaction took place easily.

  • PDF

Strength Properties of Bisphenol A-Type Epoxy-Modified Mortars under Various Curing Conditions (각종 양생조건에 따른 비스페놀 A형 에폭시수지 혼입 모르타르의 강도성상)

  • Kim, Wan-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.55-59
    • /
    • 2009
  • The epoxy resin without hardener can harden by a ring-opening reaction in the presence of the alkalies produced by the hydration of cement in epoxy-modified mortars and concretes. This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using bisphenol A-type epoxy resin without hardener. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to ideal, water, dry and heat cures. In the heat cure, the epoxy-modified mortars are sealed or unsealed with a PVDC (polyvinylidene chloride) film. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. The microstructures of the epoxy-modified mortars are also observed by scanning electron microscope. The effects of curing conditions on the strength development of the epoxy-modified mortars are examined. From the test results, the marked effectiveness of the heat cure under the PVDC film sealing against the development of the strength of the epoxy-modified mortar without the hardener is recognized. The flexural and compressive strengths of 7-day-90℃ heat-cured, PVDC film-sealed epoxy-modified mortars without hardener reach 7 to 17MPa and 24 to 44MPa respectively, and are two to three times of Unmodified mortar. Such high strength development of the epoxy-modified mortars may be achieved by the dense microstructure formation by cement hydrates and the hardening of the epoxy resin in the mortars.

  • PDF

Polymer-Supported Crown Ethers(Ⅳ) Synthesis and Phase-transfer Catalytic Activity

  • Shim Jae Hu;Chung Kwang Bo;Masao Tomoi
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.274-279
    • /
    • 1992
  • Immobilization method of lariat azacrown ethers, containing hydroxyl group in the side arm of crown ring, on the polymer matrix and the phase-transfer catalytic activity of thus obtained immobilized lariat azacrown ethers were studied. Polystyrene resins with crown ether structures and hydroxyl groups adjacent to the macrorings were prepared by the reaction of crosslinked polystyrene resins containing epoxy groups with monoaza-15-crown-5 or monoaza-18-crown-6. Microporous crosslinked polystyrene resins containing epoxy group for the syntheses of these immobilized lariat crown catalysts were prepared by suspension polymerization of styrene, divinylbenzene (DVB 2%) and vinylbenzylglycidyl ether. The immobilized lariat catalysts with 10-20% ring substitution exhibited maximal activity for the halogen exchange reactions of 1-bromooctane with aqueous KI or NaI under triphase heterogeneous conditions. Immobilized catalyst exhibited higher activity than corresponding catalyst without the hydroxyl group and this result was suggested that the active site have a structure in which the $K^+$ ion was bound by the cooperative coordination of the crown ring donors and the hydroxyl group in the side arm.

Synthesis and Applications of Reactive Polymer Modifiers for Asphalt(1) (아스팔트용 반응성 고분자 개질제 합성 및 적용(1))

  • Hwang, Ki-Seob;Ahn, Won-Sool;Suh, Soong-Hyuck;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.68-73
    • /
    • 2007
  • This study is on the synthesis of reactive polymer modifiers by emulsion polymerization to improve properties of asphalt for paving. Styrene, methyl methacrylate (MMA), isoprene and glycidyl methacrylate (GMA) which has epoxy ring to react with carboxyl group of asphaltene were used to synthesize polymer modifiers. Modifiers with various composition were tested miscibility with asphalt. Modifiers which showed good miscibility with asphalt were investigated by DSC for $T_g$. Existence of epoxy rings and their reaction with asphaltene wore investigated by FTIR. Molecular structures of synthesized modifiers were confirmed by $^1H-NMR$. The synthesized modifiers which showed good miscibility had their $Tg's$ in the range of $37.5{\sim}56.5^{\circ}C$ and had isoprene contents of 30 wt%. They showed good miscibility in the 1 and 2 wt% concentrations, but not in the 3 wt% concentration.

Physical Characteristics of Silicone Modified Epoxy as a Undercoating Materials (실리콘 변성 에폭시 언더코팅액 물성 연구)

  • Kim, Jin Kyung;Hwang, Hee Nam;Kang, Doo Whan;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.371-377
    • /
    • 2014
  • The effect of modification conditions on the physical properties of polydimethyl siloxane modified epoxy (PDMSME) was investigated. The number of ring opened epoxy attached to polydimethylsiloxane (PDMS) by silane coupling agent affected the physical properties of undercoating materials. The flexibility of thin coating was enhanced by PDMSME and the increase of ring opened epoxy attached to PDMS resulted in the increase of hardness by the crosslinking in the present with moisture. The higher molecular weight of PDMS caused the lowering of hardness while the surface contact angle increased due to the high silicone content in PDMS. The viscosity of silicone modified epoxy coating materials decreased with increasing of molecular weight of PDMS due to the lowering of entanglement of PDMSME molecules by acetone solvent and consequently, the smooth undercoated surface was obtained.

Synthesis of Dodecyl Phenol Novolac Epoxy Resin and Physical Properties of Coatings (Dodecyl phenol novolac 에폭시수지의 합성과 도막물성)

  • Lee, Dong-Chan;Kim, Jin-Wook;Choi, Joong-So
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.615-626
    • /
    • 2016
  • In the paper, mild solvent soluble alkyl group modified epoxy resins were prepared via a three-step method; (1) the condensation reaction of dodecyl phenol (DP) and formaldehyde, (2) the crosslinking reaction of dodecyl phnol novolac compound (DPC) and bisphenol A diglycidyl ether, (3) the dodecyl phenol novolac epoxy resins containing fatty acid (DPFA) was prepared by introducing fatty acid to DPC. Equivalent ratios of DP and formaldehyde were 1.25~1.333/1.0. Equivalent ratio of DPC and bisphenol A diglycidyl ether (YD-128) was 1.0/2.0. Reactivity, viscosity, molecular weight, solvent solubility, and physical properties of DPFA were investigated. The result show that as the number of aromatic ring of DPFA increased, viscosity increased and solvent solubility improved. When we test the properties of coatings by blending the synthesized DPFA with a white pigment, DPFAC-5 using triphenylphosphine (TPP) as a ring-open catalyst showed optical performance for drying time, adhesion, hardness, impact resistance, acid resistance and storage stability.

Antinociceptive, Antiinflammtory and Antihypercholesterolemic Effects of Androstane and Cholestane Derivatives (Androstane과 Cholestane 유도체의 진통, 소염 및 항고지혈 효과)

  • Kim, Hak-Soon;Ma, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.495-499
    • /
    • 2007
  • Seven epoxy- and hydroxyandrostane derivatives ($DH-1{\sim}DH-7$) and nine epoxy- and hydroxycholestane derivatives ($CH-1{\sim}CH-9$) with unsaturation in ring A and ring B were synthesized from DHEA and cholesterol, respectively. The antinociceptive effects of all synthesized compounds were measured by hot plate method. Most of androstane derivatives except $1{\alpha},2{\alpha}$-epoxy-4,6-androstadiene-3,17-dione (DH-3), and CH-6, CH-7 and CH-9 exhibited antinociceptive effect. 1,4-Androstadiene-$3{\beta},17{\beta}$-diol (DH-5, 100 mg/kg, $35.8{\pm}7.39$), $6{\alpha},7{\alpha}$-epoxy-1,4-androstadiene-3,17-dione (DH-4, 100 mg/kg, $32.6{\pm}5.50$) and $5{\alpha},6{\alpha}$-epoxy-17-oxo-androstan-$3{\beta}$-ol (DH-1, 100 mg/kg, $32.5{\pm}2.98$) were more effective than morphine (10 mg/kg, $30.6{\pm}0.5$). The analgesic effects of androstane derivatives on acetic acid writhing in mice were lower than aspirin. The androstane derivatives were less effective than ibuprofen at inhibiting effects on the carrageenin induced paw oedema. 4,6-Cholestadien-$3{\beta}$-ol (CH-5), $1{\alpha},2{\alpha}$-epoxy-4,6-cholestadien-$3{\beta}$-ol (CH-7) and $7{\alpha}$-hydroxy4-cholesten-3-one (CH-9) showed the decrease of serum triglyceride and total cholesterol levels in poloxamer P-407 injected rat.

Preparation and Curing Studies of Maleimide Bisphenol-A Based Epoxy Resins

  • Nanjunda Gowda, Shivananda Kammasandra;Mahendra, Kadidal Nagappa
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1542-1548
    • /
    • 2006
  • Maleimide modified epoxy compounds were prepared by reacting N-(4-hydroxyphenyl) maleimide (HPM) with diglycidylether of bisphenol-A. Triphenylphosphine was used as catalyst and methylethylketone as solvent. The resulting compound possessed both the oxirane ring and maleimide group. The curing reaction of the maleimide epoxy compound with amine curing agents such as 1-(2-aminoethyl) piperazine (AEP) and 5-amino-1,3,3-trimethylcyclohexane methylamine isophorone diamine, IPDA) were studied. Incorporation of maleimide groups in the epoxy resin provides cyclic imide structure and high cross-linking density to the cured resins. The cured samples were found to have good thermal stability, chemical resistance (acid/alkali/solvent) and water absorption resistance.

Steel-Ball-Impact fracture Behavior of Soda-Lime Glass Plates Bonded with Glass Fabric/Epoxy Prepreg (직물형 유리섬유/에폭시 프리프레그로 피막된 판유리의 강구 충격 파괴 거동)

  • 김형구;최낙삼
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.20-25
    • /
    • 2000
  • In order to study the impact fracture behavior of brittle materials, a steel-ball-impact experiment was Performed. Five kinds of materials were used in this study : soda-lime glass plates, glass/epoxy prepreg-one layer-bonded and unbonded glass plates, glass/epoxy prepreg-three layers-bonded and unbonded glass plates. Fracture patterns, the maximum stress and absorbed fracture energy were observed according to various impact velocities 40-120m/s. With increasing impact velocity, ring crack, cone crack, radial crack and lateral crack took place in the interior of glass plates. The generation of such cracks was largely reduced with glass/epoxy prepreg coating. Consequently, it is thought that the characteristics of the dynamic Impact fracture behavior could be evaluated using the absorbed fracture energy and the maximum stress measured at the back surface of glass plates.

  • PDF

Properties of Epoxy Adhesive Modified with Siloxane-imide (실록산 이미드로 개질된 변성 에폭시 수지의 물성)

  • Kim, W.;Gong, H.J.
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.39-48
    • /
    • 2008
  • Peel strength of epoxy adhesives can be increased by adding some amounts of XNBR. In this case, thermal resistance of the adhesive will be decreased by decrease of glass transition temperature of the adhesive. Epoxy resin modified with siloxane-imide was synthesized to improve thermal resistance and peel strength of the adhesive, after that the properties of modified epoxy resin were compared with the commercial epoxy resin. When 5% XNBR was added to 30% modified epoxy resin, this adhesive showed 0.42 N/mm of peel strength and $155^{\circ}C$ of glass transition temperature. These properties are enough compared to the required properties by the industry, i.e., 0.3 N/mm and $150^{\circ}C$, respectively. Weight loss of the modified epoxy resin by the treatment of nitric acid and 0.1N NaOH was reduced, but weight gain by the humid condition was increased by the presence of benzene ring and imide ring. 30% modified epoxy resin blended with 5% XNBR showed 220% improvement in tensile strength and elongation compared to the case of common epoxy resin. This is due to the flexibility of the siloxane in the modified epoxy resin.