• 제목/요약/키워드: epoxy coating system

검색결과 35건 처리시간 0.019초

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • 제10권3호
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

에폭시계 코팅재의 내산열충격 특성에 관한 연구 (Study on the characteristics of acid resistance and thermal shock for epoxy coatings)

  • 이상열;윤병두
    • 수산해양기술연구
    • /
    • 제43권4호
    • /
    • pp.362-369
    • /
    • 2007
  • This paper was studied on the characteristics of acid resistance and thermal shock for epoxy coatings in the strong acidic environment. The exhaust gas system, such as a air preheater, desulfurization equipment, for industrial boiler is damaged by dew point corrosion. To protect the acid corrosion, the coating using nonmetal was applied. The electrochemical polarization test, acid resistance and thermal shock test for epoxy coatings were carried out. And the acid resistance and thermal shock characteristics, aspect, and electrochemical anti-corrosion characteristics for epoxy coatings in the strong acidic environment were considered. The main results are as followings: As the epoxy glass flake coating by acidic thermal shock was damaged to the crack, blistering and elution etc., the current density of epoxy glass flake coating is high. But the damage of epoxy metal complex coating by acidic thermal shock was not occurred. Therefore the characteristics of acid resistance and thermal shock for epoxy metal complex coating is better than those for epoxy glass flake coating.

Study of Cresol-Novolac Epoxy Systems on Fusion Bonded Epoxy Coatings for Pipeline Protection

  • Chung, Chi Wook;Lee, Sang Sun;Chai, Soo Gyum;Lim, Jong Chan
    • Corrosion Science and Technology
    • /
    • 제2권4호
    • /
    • pp.202-206
    • /
    • 2003
  • Fusion Bonded Epoxy(FBE) systems have been widely used to protect pipelines for over 30 years. Numerous attempts have so far been made to improve the properties of FBE coatings such as chemical resistance, adhesion, water resistance, cathodic disbondment resistance, impact resistance, and flexibility to protect pipelines at a wet and a high temperature condition. But these attempts have not been successful in reducing some weakness, for instance, in pipeline operating at high temperature due to poor hot water resistance and cathodic protection. The purpose here is to build a basis for getting better corrosion resistance of FBE systems. Cresol-novolac epoxy coating systems were studied compared to bisphenol A type epoxy systems. After the immersion of the film in water at a high temperature for a long period, good adhesion to metal substrate and excellent cathodic disbond resistance were observed in the cresol-novolac epoxy resin systems. It is well known that the adhesion of organic coatings to metal substrate might be decreased due to the disruption of a chemical bond across the film and metal interface induced by water molecules. A high crosslinking density might decrease water permeability and improve cathodic disbonding protection in the coatings. Other factors are studied to understand anti-corrosion mechanism of Cresol-novolac epoxy coatings. In addition, the water absorption rate and the effect of cure temperature on the adhesion and cathodic disbonding resistance ofthe films were studied in different epoxy coatings and the effect of substrate was evaluated. The results of field application are proved that the Cresol-novolac epoxy coating system developed recently is one of the most suitable coatings for protection of pipelines.

원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가 (A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant)

  • 이재락;서민강;이상국;이철우;박수진
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.809-814
    • /
    • 2005
  • 본 논문에서는 원자력 발전소 격납건물 철재면에 적용되는 에폭시 코팅 시스템의 열적 특성에 관하여 방사선 조사 및 설계기준사고(DBA) 시험을 통하여 고찰하였으며, 동일 시스템의 접착강도에 대한 수중침적처리의 영향에 관해서도 알아보았다. ET-5290/carbon steel A 32 에폭시 도장 시스템의 유리전이온도($T_g$)와 열안정성은 DSC와 TGA를 가지고 각각 측정하였으며, 표면에너지적 특성에 대한 수중침적처리의 영향은 접촉각 측정을 통하여 알아보았다. 또한, 카본 철재면과 에폭시 수지간의 계면접착강도를 평가하기 위하여 부착력 시험을 행하였다. 결과로서, 방사선 조사 처리는 경화된 에폭시 도장 시스템에 내부 가교구조를 향상시켜 에폭시 도장 시스템의 $T_g$ 증가 및 열안정성을 향상시켰으며, 또한 경화 시스템의 수중침적처리시 후경화 효과로 인한 기계적 맞물림의 증가로 인하여 전체적으로 시스템의 접착강도의 증가를 가져왔다.

환경친화형 에폭시계 분체도료의 조성구축 연구 (Study on the Compositional Construction of Epoxy Based Powder Paint)

  • 임홍준;정경호
    • 청정기술
    • /
    • 제12권1호
    • /
    • pp.27-35
    • /
    • 2006
  • 본 실험은 에폭시계 분체도료의 물성에 영향을 미치는 에폭시 수지, 경화제, 충전제 및 안료 의 최적 조성 결정에 대한 연구이다. 본 연구에서 사용된 에폭시계 수지의 경화 시스템은 Diglycidyl ether of bisphenol-A (DGEBA)와 경화제로 dicyan diamide (DICY)를 사용하였다. 코팅 재료의 경화거동과 유변물성은 DSC와 레오메터를 사용하여 조사되었다. 또한 코팅재료의 스틸에 대한 접착력은 lap shear 실험을 이용하여 조사되었다. 연구 결과에 따르면 에폭시계 분체도료의 최적 조성은 에폭시계 수지 기준으로 DICY 6 phr, $CaCO_3$ 20 phr 및 $TiO_2$ 10 phr 이었다.

  • PDF

Ultrasonic Cavitation Behavior and its Degradation Mechanism of Epoxy Coatings in 3.5 % NaCl at 15 ℃

  • Jang, I.J.;Jeon, J.M.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.26-36
    • /
    • 2021
  • Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.

The study on the influence of surface cleanness and water soluble salt on corrosion protection of epoxy resin coated carbon steel

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.163-169
    • /
    • 2014
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting and power tool treatment as well as contamination of water soluble salt. To study the effect of the surface treatments and contamination, the topology of the treated surface was observed by confocal microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with immersion test of 3.5 wt% of NaCl solution. Consequently, the surface contamination by sodium chloride with $16mg/m^2$, $48mg/m^2$ and $96mg/m^2$ didn't affect the adhesion strength for current epoxy coated carbon steel and blister and rust were not observed on the surface of epoxy coating contaminated by various concentration of sodium chloride after 20 weeks of immersion in 3.5 wt% NaCl aqueous solutions. In addition, the results of EIS test showed that the epoxy-coated carbon steel treated with steel grit blasting and power tool showed similar corrosion protection performance and surface cleanness such as Sa 3 and Sa 2.5 didn't affect the corrosion protectiveness of epoxy coated carbon steel.

표면 코팅을 위한 고성능 수용성 에폭시 수지에 관한 연구 (A Study on the High Performance Waterborne Epoxy Resin for Surface Coating)

  • 김용호;이광원;김영재
    • Elastomers and Composites
    • /
    • 제35권2호
    • /
    • pp.89-97
    • /
    • 2000
  • 코팅(coating) 산업에서 유기 용제의 방출 감소를 유도하는 환경 규제에 부응하기 위하여 환경 친화적인 수용성 에폭시 수지가 개발되어 왔다. 각 개발 단계를 거칠 때마다 전 단계의 부족한 기술을 보완하기 위하여 새로운 수용성 에폭시 수지가 개발되어 왔다. 처음엔 수용성 에폭시 수지는 콘크리트 공사(masonry)에 주로 사용되었으며, 제2세대에는 콘크리트 공사뿐만 아니라 금속 표면을 보호하는 분야에도 이용되어져 왔다. 제3세대 수용성 에폭시 수지는 내식성(corrosion resistance)을 좋게 하고 휘발성유기물질(volatile organic compound)의 수준을 낮게 해주는 장점이 있어 고성능의 표면 코팅 프라이머(primers)를 제조하는데 이용되고 있다. 이 논문은 당사에서 최근에 개발한 수용성 에폭시 수지를 이용하여 에폭시 프라이머를 배합할 수 있는 중요한 가이드라인을 제시했다. 정확한 에폭시 수지-경화제 시스템을 확립하기 위하여 에폭시 수지와 경화제의 비율을 최적화하는데 중점을 두었다.

  • PDF

첨단복합방식재를 이용한 각종 선박구조물의 마찰마모손상의 최소화 (Minimization of Friction and Wear Damage of Marine Structures by Using the Advanced Anti-corrosive Composite Materials)

  • 김윤해;김진우
    • 해양환경안전학회지
    • /
    • 제5권2호
    • /
    • pp.15-26
    • /
    • 1999
  • The marine structures with sea water cooling system always expose to the oceanic atmosphere. Therefore, the protection of the equipments is very important. To investigate the effectiveness of advanced composite materials for the application in offshore environments, the tensile test, hardness test, undercutting property test, permeance test and the friction and wear test were carried out by using various applicable coating materials. The main results obtained can be summarized as follows; 1. The micro-hardness of the Archcoat 502B showed the highest value. 2. The coefficient of friction of the Rigspray coating at the speed of 2.21m/sec showed the lowest value, and that of the Archcoat 502B coating at 1.08m/sec and 0.18m/sec indicated the lowest values. 3. The wear mass at the speed of 0.18m/sec and 1.08m/sec in dry condition showed the smallest values. 4. The Archcoat 502B coating is fitted to the dynamic instruments in the range of low speed and middle speed. Rigspray coating is fitted to the dynamic instruments in the range of high speed. 5. The wear mass of five kinds of coating materials at the range of low speed was very small, and those of the Archcoat S02B, Archcoat 402B and Rigspray coating at high speed range were quitely smaller than those of the Modified Epoxy and Tar Epoxy.

  • PDF

Application of High Performance Coatings for Service Life Extension of Steel Bridge Coatings

  • Lee, Chan-Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.169-174
    • /
    • 2021
  • In this study, performance tests, a field evaluation, and a life cycle cost (LCC) analysis for high performance coating systems were conducted to prepare a plan to reduce the cost of maintenance coating and contribute to the service life extension of steel bridges by applying high performance coatings to steel bridges that will be constructed in the future. From the deterioration models based on the field evaluation for chlorinated rubber and urethane topcoat systems, which have been applied often, the mean service lives were derived as 20.8 and 26.6 years, respectively. For the other coating systems that have not been applied in practice, the coordination factors were differentially applied with evaluation items. The most durable coating system was predicted to be thermal spray coating (TSC) primer/epoxy intermediate coat/fluoride resin topcoat, with a predicted value as long as 42.2 years. The LCC analysis indicates that partial application of high performance coating, such as TSC and fluoride resin, to specific parts vulnerable to corrosion and ultraviolet ray (UV) is more advantageous than the use of general coating systems.