• Title/Summary/Keyword: epoxy bond

Search Result 159, Processing Time 0.019 seconds

Bond Strength Evaluation of Epoxy-Coated Reinforcement using Nonlinear Finite Element Analysis (비선형 유한요소법에 의한 에폭시 피막된 철근의 부착에 관한 연구)

  • 최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.65-68
    • /
    • 1991
  • Finite element analysis is used to study the role of interfacial properties on the bond strength of reinforcing steel to concrete. Specifically, the role played by epoxy coatings on the failure of standard beam-end specimens is explored. Experimental results show that epoxy coatings reduce bond strength, but that the effect is dependent on the bar size and the deformation pattern. The finite element model for the beam-end specimen includes representations for the deformed steel bar, the concrete, and the interfacial material. The interface elements can be varied to match the stiffness and friction properties of the interfacial material. Cracking within the concrete is represented using Hillerborg's ficticious crack model. The model is used to study important aspects or behavior observed in the tests and to provide an explanation for the effect of the various test parameters.

  • PDF

Effects of Epoxy Coating on the Bond Strength of Reinforcing Bars (철근과 콘크리트의 부착력에 대한 에폭시 피막의 영향)

  • ;Had;Darwin, David;McCabe, L. Steve
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.79-82
    • /
    • 1990
  • The results of a large-scale study to determine the effects of epoxy coating on the bond strength between deformed reinforcement and concrete are descrebed. Tests include beam-end specimens containing No. 5(16mm), No. 6 (19mm), No. 8(25mm), No. 11(32mm) bars with average coating thicknesses ranging from 3 to 17 mils(0.08-0.43mm). Three deformation patterns are evaluated. Specimens with covers of 1, 2, and 3 bar deameters are studied. Both top-cast and bottom-cast bars are tested. Epoxy coatings are found to significantly reduce bond strength. The severity of that reduction is a function of deformation pattern, bar size, and coating thickness. Design recommendations based on these observations differ from the modifications to the 1989 ACI Building Code.

  • PDF

Parametric Study on Test Method for Pull-off Strength of FRP Composite Material used in Strengthening RC Members (FRP 복합체의 콘크리트에 대한 접착강도 시험방법 변수 연구)

  • Choi, Ki-Sun;You, Young-Chan;Lee, Han-Seung;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.222-225
    • /
    • 2006
  • Pull-off test is widely used to evaluate bond performance between concrete and FRP composite. However, reliability of experiment result declines due to many difference between test methods of each national standards. This study analyzed problems of various existing test methods for pull-off test and suggested standardized test method. In addition, since tensile strength of concrete is smaller than bond strength of epoxy resin, maximum bond strength of epoxy resin shall be limited within tensile strength of concrete. Alternative testing method, therefore, which decrease FRP adhesion areas than concrete adhesion areas is suggested to widen test range of bond strength in pull-off test. In the experimental results, bond performance can be estimated up to two times of tensile strength of concrete by reducing FRP adhesion areas by 1/3.

  • PDF

An Experimental Study for the Bond Performance of the Epoxy-coated Reinforcement in Marine Concrete Structures (해양 콘크리트 구조물에서 에폭시 도막철근의 부착성능에 관한 연구)

  • 조병완;유태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.122-126
    • /
    • 1996
  • In recent years, plenty of problems in the large-scaled bridges, piers…have been reported to the public due to the severe environment factors. The use of Epoxy-Coated reinforcement against salt and sulfate corrosion is considered as a reasonable solution and tested to study the bond performance between the thickness of coating and bond stresses. The results are that the strength of bond was decreased by 10 to 13 percent in the case of 100$\mu\textrm{m}$ of coating thickness and by 15 to 25 percent in the case of 200$\mu\textrm{m}$ to 300$\mu\textrm{m}$ and significantly fell down when the thickness was above 300$\mu\textrm{m}$. Accordingly, a 200$\mu\textrm{m}$ coating-thickness to the reinforcement is suggested to maintain the acceptable bond mechanism and goes well with the ASTM(item NO.A775) and those of Korean Concrete Institute.

  • PDF

Pull-Out Bond Properties of Polymer Cement Coated Rebars in HSC (고강도콘크리트에서 폴리머 시멘트 슬러리 도장철근의 인발부착특성)

  • 김민호;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.215-220
    • /
    • 2002
  • Epoxy-coated re-bar was partly used to the structures and put to practical use, but were not economical and appeared to have defects such as the diminishing of long term bond strength between concrete. The study of polymer cement slurry coated re-bar was started in order to complement the defect of epoxy coated re-bar, and ever since the basic properties appeared to be excellent. But, study of bond properties embedded in concrete specimens was insufficient until now. This study attempts to examine the possibility of improving the bond strength of polymer cement slurry coated re-bar between concrete specimens in accordance with ACI Code and KS Code through pull-out test of 150mm$\times$150mm$\times$150mm substrates with polymer cement slurry coated re-bar having polymer cement ratios of 50%, 75% and 100%, coating thickness 250${\mu}{\textrm}{m}$, 450 ${\mu}{\textrm}{m}$ and with curing ages of 3, 7 and 28 days. High strength concrete was designed having a compressive strength of 500kgf/cm2 as specified. Practical bond length ranges of 55 and 85mm were applied to each of specimen. The bond strength of polymer cement slurry coated re-bar using St/BA-1 and St/BA-2 was compared to that of plain re-bar. The results of this study showed that the bond strength of 55mm bond length was much higher than that of 85mm bond length.

  • PDF

Study on the Thermal Properties of Epoxy Resin Compositions having Conjugated Double Bond in Backbone (공액이중결합의 골격구조를 갖는 에폭시수지 경화물의 열특성에 관한 연구)

  • Lee, KyoungEun;Yoo, Min Jae;Kim, Young Chul
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.135-145
    • /
    • 2013
  • Epoxy resin compositions were studied on the view of self-extinguishing properties without retardant additives and suitability as materials of eco-friendly EMC (Epoxy molding compound). Cured epoxy and phenolic resin composition having conjugated double bond of aromatic structure exhibited self-extinguishing properties and low heat release capacity. In this study, the structure of long conjugated double bond of hetero-atom type azomethyne group between conjugated double bonds of aromatic structure showed lower heat release capacity. Low heat release capacity seemed to be related with high reaction enthalpy, $T_g$ and reactivity affected by hetero-atom structure in azomethyne group.

An Evaluation of Lap Splice Length of Epoxy Coated Reinforcements Using Beam-End Test (보-단부 시험을 이용한 에폭시 도막 철근의 겹침 이음길이 평가)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.175-182
    • /
    • 2020
  • The application of epoxy coated reinforcements is increased as a means to prevent a corrosion of reinforcements embedded in reinforced concrete structures, However, epoxy coating may reduce the bond capacity between concrete and reinforcement, which results a longer development length and lap splice length. This paper aims to the possibility of modification in lap splice length from reduction of basic development length which was confirmed using a direct pull out test. Total 36 beam specimens were tested to compare the lap splice properties of normal and epoxy coated reinforcements with beam-end test for various lap lengths and diameters of reinforcements. According to the results on failure modes, deformations, and crack widths of this experiments, the modification factor of 1.2 should be used, though the direct bond capacity is assured through direct pull out test.

Simple Bond Stress and Slip Relationship between CFRP Plank and Cast-in-Place DFRCC (탄소섬유 FRP판과 현장타설 고인성섬유보강콘크리트 사이의 단순 부착슬립 관계)

  • Yoo, Jun-Sang;Yoo, Seung-Woon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.25-31
    • /
    • 2016
  • Bond stress between cast-in-place ductile fiber reinforced cementitious composites and CFRP plank were experimentally analyzed. As failure shape, the mixture of failure between CFRP plank and epoxy, and failure between concrete and epoxy was shown. In case of RFCON from the suggested simple bond slip relationship, the maximum average bond stress was 5.39MPa, the initial slope was 104.09MPa/mm, and the total slip length was 0.19mm. PPCON showed the maximum average bond stress of 4.31MPa, the initial slope of 126.67MPa/mm, and the total slip length of 0.26mm, while RFCON+ appeared to have 8.71MPa, 137.69MPa/mm, 0.16mm. PPCON+ had 6.19MPa maximum average bond stress, 121.56MPa/mm initial slope, and 0.34mm total slip length. To comprehend the behavior of composite structure of FRP and concrete, local bond slip relation is necessary, and thus a simple relation is suggested to be easily applied on hybrid composite system.

Effects of Different Paints on Steel Rods Anticorrosion of Reinforced Concrete in Salt Water (해수에서 철근콘크리트의 철근 방식에 대한 도료의 효과)

  • 이신호;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.25 no.2
    • /
    • pp.67-75
    • /
    • 1983
  • The objectives of this paper were to measure the bond strengths of reinforced concrete in which the steel rods were coated with five different kinds of anticorrosion paints, and to compare their prevention effects in salt water. The paints used in the study were epoxy resin I . II . III, Z.R. P., and silicone resin, which were applied at rates recommended by the manufacturers. The bond strengths were measured on the 7-, 14-, and 28-th days after molding. Corrosion conditions of coated steel plate under fresh water, seawater, 10 % salt water, and 20% salt water, were inspected every month during four months test peoriods, respectively. The results obtained from tests are summarized as follows: 1. Paint-coating may reduce the bond strengths of reinforced concrete. Silicone resin paint showed some 20% reduction in the strength compared to those without the paint. However, the other paints seemed not to significantly affect the strength. 2. Picture analyses showed that epoxy resin I and II significantly prevented corrosion steel plates in seawater. Epoxy resin I and silicone resin coating did not do a good job in corrosion prevention. Z.R. P. paint was found to be moderate as preventive coating paint. 3. Varying soluble salt contents had little effects on the corrosion prevention of tested paints. 4. Epoxy resin I and II were found to be appropriate as a coating material to prevent the corrosion of steel rods in seawater. Z.R.P. may also be used for the purpose.

  • PDF

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened by GFRP (Glass Fiber Reinforced Polymers) (유리섬유쉬트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • 최기선;유영찬;이진용;김긍환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.531-536
    • /
    • 2003
  • It is generally known that RC flexural members strengthened by GFRP(Glass Fiber Reinforced Polymers) tend to be failed by premature bond failure near the flexural-shear cracks happened at the mid-span of beams. It is therefore strongly recommended that premature bond failure must be avoided to insure the intended strengthening effects sufficiently. The various methodologies such as increasing bonded length of GFRP and bonding details including U-shape wrappings and epoxy shear-keys are examined in this study. The bonded length of GFRP are calculated based on the assumed bond strengths of epoxy saturating resin. Total six half scale RC beam specimens were constructed and tested to investigate the effectiveness of each methodologies to prevent the bond failure of GFRP. Test results of each specimens are discussed in this paper.

  • PDF