• Title/Summary/Keyword: epoxy

Search Result 3,681, Processing Time 0.025 seconds

Study on Properties of Epoxy Resin Compositions Containing Novolac Derivatives (바이페닐 유도체를 도입한 에폭시 수지 조성물의 특성에 관한 연구)

  • Choi, Su Jung;Kim, Young Chul
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.138-143
    • /
    • 2011
  • Recently epoxy resin compositions having backbone of novolac derivatives with biphenylene compounds have been used as materials of eco-freindly EMC (Epoxy Molding Compound), because the cured epoxy resin compositions show the self-extinguishing without flame retardant additives. In this study, epoxy resin compositions were prepared and cured using novolac derivateves with biphenylene. Their propeties - structures of phenol derivatives and reactivity, thermal expansion, modulus, and thermal degradation - were obtained by DSC, DMA, TMA, TGA method. When both epoxy resin and hardenr had the biphenyl novolac structure, epoxy resin compositions showed low thermal expansion, good mechanical property, and combustion retardation.

A Study on Thermal and Mechanical Properties of Elastic Epoxy with Water Aging (탄성형 에폭시의 흡습 열화에 따른 열적 및 기계적 특성에 관한 연구)

  • 이관우;민지영;한기만;최용성;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.293-299
    • /
    • 2004
  • In this paper, thermal and mechanical properties of electric epoxy with water aging were discussed. We made elastic epoxy specimen adding a ratio of 0〔phr〕20〔phr〕, 35〔phr〕 and 53〔phr〕 with modifier to existing epoxy. We studied mechanical property of elastic resin after absorption in water from 0 to 484 hours. As a result, diffusion factor of elastic epoxy showed 20-21${\times}$10$^{-4}$ $\textrm{mm}^2$/s and general epoxy showed 9.5${\times}$10$^{-4}$ $\textrm{mm}^2$/s. Elastic property increased linearly according to addiction and decreased according to water absorption. Tensile strength was reduced according to addition. It was affected by water absorption of micro-void of elastic epoxy. Hardness inclined to decrease after increasing according to absorbed time. In water-absorption state, it was experimented a change of heat flow by temperature of elastic epoxy and change of thermal expansion coefficient. DSC (Differential Scanning Calorimetry) and TMA (Thermomechanical Analysis) equipments were used to measure Tg. A temperature ringe of DSC was from -0($^{\circ}C$) to 200($^{\circ}C$). One of TMA was from -0($^{\circ}C$) to 350($^{\circ}C$). In addition, we investigated structural analysis of water absorbed specimen using SEM (Scanning Electron Microscope).

AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer (친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Study of Cresol-Novolac Epoxy Systems on Fusion Bonded Epoxy Coatings for Pipeline Protection

  • Chung, Chi Wook;Lee, Sang Sun;Chai, Soo Gyum;Lim, Jong Chan
    • Corrosion Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.202-206
    • /
    • 2003
  • Fusion Bonded Epoxy(FBE) systems have been widely used to protect pipelines for over 30 years. Numerous attempts have so far been made to improve the properties of FBE coatings such as chemical resistance, adhesion, water resistance, cathodic disbondment resistance, impact resistance, and flexibility to protect pipelines at a wet and a high temperature condition. But these attempts have not been successful in reducing some weakness, for instance, in pipeline operating at high temperature due to poor hot water resistance and cathodic protection. The purpose here is to build a basis for getting better corrosion resistance of FBE systems. Cresol-novolac epoxy coating systems were studied compared to bisphenol A type epoxy systems. After the immersion of the film in water at a high temperature for a long period, good adhesion to metal substrate and excellent cathodic disbond resistance were observed in the cresol-novolac epoxy resin systems. It is well known that the adhesion of organic coatings to metal substrate might be decreased due to the disruption of a chemical bond across the film and metal interface induced by water molecules. A high crosslinking density might decrease water permeability and improve cathodic disbonding protection in the coatings. Other factors are studied to understand anti-corrosion mechanism of Cresol-novolac epoxy coatings. In addition, the water absorption rate and the effect of cure temperature on the adhesion and cathodic disbonding resistance ofthe films were studied in different epoxy coatings and the effect of substrate was evaluated. The results of field application are proved that the Cresol-novolac epoxy coating system developed recently is one of the most suitable coatings for protection of pipelines.

Influence of Fluoro-illite on Flame Retardant Property of Epoxy Complex (에폭시 복합체의 난연 특성에 미치는 불소화 일라이트의 영향)

  • Yu, Hye-Ryeon;Jeong, Eui-Gyung;Kim, Jin-Hoon;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • In this study, illite, an environmental friendly, low cost, and high aspect ratio additive, was used to improve flame retardant property of epoxy and it was fluorinated to enhance dispersion of hydrophilic illite in hydrophobic epoxy by introducing hydrophobic functional groups. Fluorination of illite enhanced illite dispersion ill epoxy solution before curing and that in the complex after curing. These enhanced dispersions were attributed to the increased affinity of illite to hydrophobic epoxy solution induced by fluorination of illite and the increased intercalation of epoxy polymer or exfoliation of illite by epoxy curing. Hence, limited oxygen index(LOI) of fluorinated illite/epoxy complex increased by 24%, compared to that of epoxy, suggesting that the preparation of fluorinated illite/epoxy complex increased their flame retardant properties.

Effect of Silicone-modified Microsilica Content on Electrical and Mechanical Properties of Cycloaliphatic Epoxy/Microsilica System

  • Park, Jae-Jun;Yoon, Chan-Young;Lee, Jae-Young;Cheong, Jong-Hoon;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.155-158
    • /
    • 2016
  • The effect of microsilica content modified with silicone-modified epoxy on electrical and mechanical properties of cycloaliphatic epoxy/microsilica system was investigated. The cycloaliphatic epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was an anhydride. Surface of microsilica was modified with silicone-modified epoxy. Electrical breakdown strength, the most important property for electrical insulation materials was tested. Tensile and flexural tests were also performed using universal testing machine (UTM). The microcomposite with 60 wt% microsilica shows maximum values in electrical breakdown strength.

Curing of Epoxy Resins by Aminophosphazene Derivatives and Its Thermal Properties (아미노포스파젠 유도체에 의한 에폭시수지의 경화와 열적성질)

  • 윤흥수
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.7-17
    • /
    • 1999
  • Aminophosphazene derivatives were prepared from hexachlorocyclotriphosphazene and used for the curing agents of epoxy resins. The effect of the curing agent on the dynamic viscoelastic properties, flame proofing, and heat resistance of the cured epoxy resins were investigated and compared with those for the epoxy resins cured with aliphatic and aromatic amines. The epoxy resin cured by 1,1-diamino-3,3,5,5-tetrachlorocyclotriphosphazene showed the highest storage modulus and glass transition temperature when cured at 19$0^{\circ}C$ for 6 hours. The epoxy resins cured with phosphazene derivatives showed superior flame proofing to those with aliphatic amine and aromatic amine. Particularly it is an effective curing agent for epoxy resins to enhance the storage modulus, flame proofing and resistance to heat.

  • PDF

Resistance to Chemicals and Water of Epoxy Resin Cured with Phosphazene Derivatives (포스파젠 유도체에 의해 경화된 에폭시수지의 내수.내약품성)

  • 윤흥수;최경식
    • Textile Coloration and Finishing
    • /
    • v.13 no.3
    • /
    • pp.188-196
    • /
    • 2001
  • 1, 1-diamino-3, 3, 5, 5-tetrachlorocyclotriphosphazene, 1, 1-diami-no3, 3, 5, 5-tetra-(p-bromophenoxy)cyclotriphosphazene, and 1, 1-diamino-3, 3, 5, 5-tetra-(p-chlorophenoxy) cyclotri-phosphazene(ACPP) was prepared from hexachlorocyclotriphosphazene and used for the curing agent of bisphenol A type epoxy resin and phenol novolak. The resistance to chemicals and water of the cured epoxy resins were examined by DMTA and compared with those of the epoxy rosins cured with phosphazene derivatives and 4, 4'-diaminodiphenylmethane. The effect of the curing agent on resistance to chemicals and water of the cured epoxy resins were investigated. The epoxy resins cured with 1, 1-diamino-3, 3, 5, 5-tetrachlorocyclotriphosphazene and 1, 1- diamino-3, 3, 5, 5-tetra- (p-bromophenoxy)cyclotriphosphazene showed superior resistance to chemicals and water to those of 1, 1-diamino-3, 3, 5, 5-tetra- (p-chlorophenoxy)cyclotriphosphazene and 4, 4'-diaminodiphenylmethane. It is an effective curing agent for epoxy resins to enhance the resistance to chemicals, water and tome proofing.

  • PDF

The Life Span of LED by the Rising Glass Transitions Temperature of Epoxy (에폭시 유리전이 온도상승에 따른 LED 수명의 변화)

  • Ban, Jae-Sam;Jung, Yong-Ho;Yang, Hyun-Sam;Kim, Sun-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.109-113
    • /
    • 2012
  • The LED failure rate greatly depends on the physical properties of packaging materials (epoxy). The glass transitions temperature (Tg) of the epoxy is one of the most important physical properties. Therefore, in the present study, various epoxies with high Tg were prepared and their failure shapes were analyzed. In addition, the failure shapes depending on the amount of epoxy and the wire bonding structure were measured. As a consequence, the lower failure rate was obtained with the smaller amount of epoxy. The safety of LED was improved with increasing the Tg of the epoxy.

Electrical Conduction and Dielectric Properties of Epoxy/Organophilic Clay Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.43-46
    • /
    • 2013
  • In order to develop electrical insulation material, organically modified layered silicate was incorporated into an epoxy matrix to prepare nanocomposite. Transmission electron microscopy (TEM) observation showed that organophillic clay was in an exfoliated state, while hydrophilic clay was not dispersed into nanolayers within the epoxy matrix. Epoxy/organophilic clay (2.8 wt%) nanocomposite was mixed and cured at $150^{\circ}C$ for 4.5 hr. I-V characteristics, volume resistance and dielectric properties for the cured nanocomposite were estimated. Current density increased with increasing temperature, and volume resistance decreased with increasing temperature, in neat epoxy and epoxy/organophilic clay (2.8 wt%) nanocomposite. As frequency increased, the dielectric loss value decreased in the two systems.