• Title, Summary, Keyword: epoxy

Search Result 3,490, Processing Time 0.037 seconds

EMI shielding effectiveness and mechanical properties of MWCNTs-reinforced biodegradable epoxy matrix composites

  • Yim, Yoon-Ji;Chung, Dong Chul;Park, Soo-Jin
    • Carbon letters
    • /
    • v.22
    • /
    • pp.36-41
    • /
    • 2017
  • Biodegradable epoxy (B-epoxy) was prepared from diglycidyl ether of bisphenol A and epoxidized linseed oil. The mechanical properties of B-epoxy composites reinforced with multi-walled carbon nanotubes (MWCNTs/B-epoxy) were examined by employing dynamic mechanical analysis, critical stress intensity factor ($K_{IC}$) tests, and impact strength tests. The electromagnetic interference shielding effectiveness (EMI-SE) of the composites was evaluated using reflection and absorption methods. Mechanical properties of MWCNTs/B-epoxy were enhanced with an increase in the MWCNT content, whereas they deteriorated when the MWCNT content was >5 parts per hundred resin (phr). This can likely be attributed to the entanglement of MWCNTs with each other in the B-epoxy due to the presence of an excess amount of MWCNTs. The highest EMI-SE obtained was ~16 dB for the MWCNTs/B-epoxy composites with a MWCNT content of 13 phr at 1.4 GHz. The composites (13 phr) exhibited the minimum EMI-SE (90%) when used as shielding materials at 1.4 GHz. The EMI-SE of the MWCNTs/B-epoxy also increased with an increase in the MWCNT content, which is a key factor affecting the EMI-SE.

Effect of nanofillers on the dielectric properties of epoxy nanocomposites

  • Wang, Q.;Chen, G.
    • Advances in materials Research
    • /
    • v.1 no.1
    • /
    • pp.93-107
    • /
    • 2012
  • Epoxy resin is widely used in high voltage apparatus as insulation. Fillers are often added to epoxy resin to enhance its mechanical, thermal and chemical properties. The addition of fillers can deteriorate electrical performance. With the new development in nanotechnology, it has been widely anticipated that the combination of nanoparticles with traditional resin systems may create nanocomposite materials with enhanced electrical, thermal and mechanical properties. In the present paper we have carried out a comparative study on dielectric properties, space charge and dielectric breakdown behavior of epoxy resin/nanocomposites with nano-fillers of $SiO_2$ and $Al_2O_3$. The epoxy resin (LY556), commonly used in power apparatus was used to investigate the dielectric behavior of epoxy resin/nanocomposites with different filler concentrations. The epoxy resin/nanocomposite thin film samples were prepared and tests were carried out to measure their dielectric permittivity and tan delta value in a frequency range of 1 Hz - 1 MHz. The space charge behaviors were also observed by using the pulse electroacoustic (PEA) technique. In addition, traditional epoxy resin/microcomposites were also prepared and tested and the test results were compared with those obtained from epoxy resin/nanocomposites.

Ballistic impact response of Kevlar Composites with filled epoxy matrix

  • Pekbey, Yeliz;Aslantas, Kubilay;Yumak, Nihal
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.191-200
    • /
    • 2017
  • Impact resistance and weight are important features for ballistic materials. Kevlar fibres are the most widely reinforcement for military and civil systems due to its excellent impact resistance and high strength-to-weight ratio. Kevlar fibres or spectra fiber composites are used for designing personal body armour to avoid perforation. In this study, the ballistic impact behaviour of Kevlar/filled epoxy matrix is investigated. Three different fillers, nanoclay, nanocalcite and nanocarbon, were used in order to increase the ballistic impact performance of Kevlar-epoxy composite at lower weight. The filler, nanoclay and nanocalcite, content employed was 1 wt.% and 2 of the epoxy resin-hardener mixture while the nanocarbon were dispersed into the epoxy system in a 0.5%, 1% and 2% ratio in weight relating to the epoxy matrix. Specimens were produced by a hand lay-up process. The results obtained from ballistic impact experiments were discussed in terms of damage and perforation. The experimental tests revealed a number of damage mechanisms for composite laminated plates. In the ballistic impact test, it was observed whether the target was perforated completely penetrated at the back or not. The presence of small amounts of nanoclay and nanocalcite dispersed into the epoxy system improved the impact properties of the Kevlar/epoxy composites. The laminates manufactured with epoxy resin filled by 1 wt.% of nanoclay and 2 wt% nanocalcite showed the best performance in terms of ballistic performance. The addition of nanocarbon reduced ballistic performance of Kevlar-epoxy composites when compared the results obtained for laminates with 0% nanoparticles concentration.

Study on the characteristics of acid resistance and thermal shock for epoxy coatings (에폭시계 코팅재의 내산열충격 특성에 관한 연구)

  • Lee, Sang-Yeal;Yun, Byoung-Du
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.4
    • /
    • pp.362-369
    • /
    • 2007
  • This paper was studied on the characteristics of acid resistance and thermal shock for epoxy coatings in the strong acidic environment. The exhaust gas system, such as a air preheater, desulfurization equipment, for industrial boiler is damaged by dew point corrosion. To protect the acid corrosion, the coating using nonmetal was applied. The electrochemical polarization test, acid resistance and thermal shock test for epoxy coatings were carried out. And the acid resistance and thermal shock characteristics, aspect, and electrochemical anti-corrosion characteristics for epoxy coatings in the strong acidic environment were considered. The main results are as followings: As the epoxy glass flake coating by acidic thermal shock was damaged to the crack, blistering and elution etc., the current density of epoxy glass flake coating is high. But the damage of epoxy metal complex coating by acidic thermal shock was not occurred. Therefore the characteristics of acid resistance and thermal shock for epoxy metal complex coating is better than those for epoxy glass flake coating.

Oxidation Effect of Graphene Nanoplatelets on the Mechanical Properties and Bonding Performance of Epoxy Paint Material (그래핀 나노플레이트릿의 산화가 에폭시 도막재료의 역학적 및 부착 특성에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Sasui, Sasui;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • /
    • pp.181-182
    • /
    • 2020
  • In this study, oxidized graphene nanoplatelet(GO) was prepared by oxidizing graphene nanoplatelet(GNP) with nitric acid in order to solve the problem of dispersion of GNP, one of nano materials. GNP/Epoxy and GO/Epoxy were prepared by mixing GNP, GO with 0.1, 0.3, 0.5 and 1.0 wt.% in epoxy and the mechanical properties, bond performance were evaluated. As a result, GNP/Epoxy and GO/Epoxy showed higher tensile strength than Neat Epoxy at the 0.1, 0.3 wt.%. Especially, when 0.1 wt.% of GO was incorporated into epoxy resin, it showed highest tensile strength. It was confirmed that acid treatment of GNP was effective in improving the mechanical properties of epoxy paint. However, graphene material was found that it was not effective in improving the bond strength of the epoxy paint.

  • PDF

Effects of Ultraviolet Surface Treatment on Adhesion Strength of Carbon/Epoxy Composite

  • Kim, Jong-Min;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • /
    • pp.15-19
    • /
    • 2002
  • In this work, the surface modification of carbon/epoxy composites was investigated using UV (ultraviolet ray) surface treatment to increase adhesion strength between the carbon/epoxy composites and adhesives. After UV surface treatment, XPS (X-ray photoelectron spectroscopy) tests were performed to analyze the surface characteristics of the carbon/epoxy composites. Comparing adhesion strengths with the surface characteristics, the effects of the surface modification of carbon/epoxy composites by UV surface treatments on the adhesion strengths were investigated.

  • PDF

Rubber Toughened Epoxy

  • Ratna, D.;Banthia, Ajit K.
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • Toughening of epoxy resins for improvement of crack resistance has been the subject of intense research interest during the last two decades. Epoxy resins are successfully toughened by blending with a suitable liquid rubber, which initially remains miscible with epoxy and undergoes a phase separation in the course of curing that leads to the formation of a two-phase microstructure, or by directly blending preformed rubbery particle. Unlike the situation for thermoplastics, physical blending is not successful for toughening epoxy resins. Recent advances in the development of various functionalized liquid rubber-based toughening agents and core-shell particles are discussed critically in this review.

Effect of Nano-silicate on the Mechanical, Electrical and Thermal Properties of Epoxy/Micro-silica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.153-156
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy/micro-silica composite (EMC) and epoxy/micro-silica/nano-silicate composite (EMNC) were prepared, and their tensile and flexural strength, AC insulation breakdown strength and thermal conductivity and thermal expansion coefficient were compared. Nano-silicate was prepared in an epoxy matrix by our AC electric field process. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of nano-silicate to the EMC system.

DIMENSIONAL ACCURACY OF EPOXY RESINS AND THEIR COMPATIBILITY WITH IMPRESSION MATERIALS (EPOXY RESIN의 정확도와 인상재와의 친화성에 관한 연구)

  • Chang, Su-Kyoung;Chang, Ik-Tae;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.383-394
    • /
    • 1999
  • The indirect technique for making cast restoration requires that dies be as accurate and durable as possible. Currently, stone is the most commonly used material for die. However, it has some problems such as the weakness in its strength and low abrasion resistance. Recently, epoxy resin die systems have become available. The purpose of this study was to examine two commercially available resin die systems and evaluate some characteristics for their clinical performance. This study evaluated the dimensional accuracy of epoxy resins and their wettability with impression materials. In this study, the first experiment was about dimensional accuracy of different die materials. The master model was made of stainless steel. 10 models were made of two epoxy resins (Die-epoxy, Tri-epoxy) and a die stone (Fujirock) each. Occlusal diameter (Dimension I), occluso-gingival height (Dimension II), and interabutment distance (Dimension III) were measured in each model. Next, the contact angles of die materials with impression materials were observed. The blocks were made of polyether, hydrophilic additional silicone, polysulfide impression materials. By drop-ping the same amount (0.05ml) of Tri-epoxy, Die-epoxy, and die stone on the blocks, 10 samples of each die material were made. After setting of materials, the contact angles were measured. The results of this study were as follows. 1. The expansion of stone die and the shrinkage of resin dies in occlusal diameter were observed, and stone and Tri-epoxy were expanded and Die-epoxy was shrinked in occluso-gingival height. There was little change among materials in interabutment distance (p<0.05). 2. In comparison with the master model Tri-epoxy had the least variation in measurement of the three die systems examined. Die-epoxy was next, and die stone showed the greatest variation. 3. The compatibility of die stone for polyether, hydrophilic additional silicone, polysulfide decreased in order, wherease epoxy materials had the decreased compatibility for polyether and polysulnde, hydrophilic additional silicone in order. It was not statistically different between polyether and polysulfide (p<0.05). 4. The contact angles of Tri-epoxy, Die-epoxy, die stone were getting bigger in order.

  • PDF

The Effect of Epoxy and Epoxy-Siloxane Emulsion Treatment on the Anticrease Property of Silk Fabrics (Epoxy 및 Siloxane Emulsion 처리가 견직물의 방추성에 미치는 영향)

  • 장병호;신광호;이병학
    • Textile Coloration and Finishing
    • /
    • v.5 no.1
    • /
    • pp.10-18
    • /
    • 1993
  • Epoxy compound was synthesized from bisphellol-A with epichlorophydrine. Epoxy compound and siloxane were emulsified conjugative one or another. The water repellency of silk fabrics was also highly improved by the treatment of epoxy-siloxane mixed emulsions containing stannic chloride and zirconium oxychloride. The maximum wrinkle recovery was obtained from the fabrics treated under the condition 2.5%-epoxy-siloxane emulsion at 16$0^{\circ}C$. The breaking elongation, the reflectance, the tensile strength and the bending properties of silk fabrics were not degraded severely by the treatment of epoxy-siloxane emulsion.

  • PDF