• 제목/요약/키워드: epoxy

검색결과 3,682건 처리시간 0.037초

Degradation of Epoxy Coating due to Aging Acceleration Effects

  • Nah, Hwan Seon;Lee, Chul Woo;Suh, Yong Pyo
    • Corrosion Science and Technology
    • /
    • 제5권3호
    • /
    • pp.99-105
    • /
    • 2006
  • This paper is to investigate feasibility on quantitative aging state of epoxy coating on concrete wall in containment structure under operation of nuclear power plants. For evaluating the physical characteristics of the epoxy coating, adhesion strengths of two kinds of degraded epoxy coating systems on both steel surfaces and concrete surfaces were measured via accelerated aging. Comparatively impedance data taken by ultrasonic test were also taken to relate with adhesion data. After aging, in case of concrete, from half of specimens, aging of epoxy coating was developed. As for steel, on $4^{th}$ inspection day, adhesion force was failed. To improve reliability on quality degradation of epoxy, relationship between adhesion and impedance was analyzed. By tracing to co-respond to these data, it was possible to Fig. out physical state of as-built epoxy coating. The possibility to develop new methodology of time - dependent aging state on epoxy coating was found and discussed.

Preparation of Adhesion Promoter for Lead Frame Adhesion and Application to Epoxy Composite

  • Kim, Jung Soo;Kim, Eun-jin;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • 제57권2호
    • /
    • pp.48-54
    • /
    • 2022
  • A polymeric adhesion promoter was synthesized to improve the adhesive strength of the Ni lead frame/epoxy composite. Poly(itaconic acid-co-acrylamide) (IAcAAM) was prepared by copolymerizing itaconic acid and acrylamide. We compared the adhesive strength between the Ni lead frame and epoxy composite according to the molecular weight of IAcAAM. The molecular weight of IAcAAM was controlled using an initiator, which made it possible to use IAcAAM in the epoxy molding compound (EMC) manufacturing process by modulating the melting temperature. The adhesive strength of Ni lead frame/epoxy composite increased with the addition of IAcAAM to the epoxy composite. In addition, as the molecular weight of IAcAAM increased, the adhesive strength of the Ni lead frame/epoxy composite slightly increased. We confirmed that IAcAAM with an appropriate molecular weight can be used in the EMC manufacturing process and increase the adhesive strength of the Ni lead frame/epoxy composite.

Effect of structural voids on mesoscale mechanics of epoxy-based materials

  • Tam, Lik-ho;Lau, Denvid
    • Coupled systems mechanics
    • /
    • 제5권4호
    • /
    • pp.355-369
    • /
    • 2016
  • Changes in chemical structure have profound effects on the physical properties of epoxy-based materials, and eventually affect the durability of the entire system. Microscopic structural voids generally existing in the epoxy cross-linked networks have a detrimental influence on the epoxy mechanical properties, but the relation remains elusive, which is hindered by the complex structure of epoxy-based materials. In this paper, we investigate the effect of structural voids on the epoxy-based materials by using our developed mesoscale model equipped with the concept of multiscale modeling, and SU-8 photoresist is used as a representative of epoxy-based materials. Developed from the results of full atomistic simulations, the mesoscopic model is validated against experimental measurements, which is suitable to describe the elastic deformation of epoxy-based materials over several orders of magnitude in time- and length scales. After that, a certain quantity of the structure voids is incorporated in the mesoscale model. It is found that the existence of structural voids reduces the tensile stiffness of the mesoscale epoxy network, when compared with the case without any voids in the model. In addition, it is noticed that a certain number of the structural voids have an insignificant effect on the epoxy elastic properties, and the mesoscale model containing structural voids is close to those found in real systems.

의상 피혁 가공용 수용성 폴리우레탄-에폭시 하이브리드 수지의 합성 및 물성에 관한 연구 (Study on Properties of Waterborne Polyurethane-Epoxy Hybrid Resin for Leather Garment Coationgs)

  • 이주엽;김기준
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.325-336
    • /
    • 2010
  • In this study, we experimented that how to synthesis waterborne urethane-epoxy hybrid resin for leather garment coatings. First of all, We had analyzed datas by FT-IR, SEM and TGA for the machanical properties. By instruments analysis measurement we confirmed that synthesis of urethane and epoxy. In this experiment we knew that polyurethane and urethane-epoxy hybrid resin have 4~5 grades of solvent resistance. Tensile strength measured in the urethane-epoxy resin(epoxy 12%, 2.033$kg_f/mm^2$) had the most strong strength than polyurethane(1.833 $kg_f/mm^2$) emulsion samples. Also urethane-epoxy hybrid resin had better result than polyurethane in acid resistance and abrasion test. As hight proportion of epoxy in hybid resin, we obtained low elongation and low flexibility. In this result, the mechanical properties of waterborne polyurethane-epoxy hybrid resin showed that how effect in leather coating by ratio of epoxy emulsion.

그래핀 나노플레이트릿의 산화가 에폭시 도료의 역학적 특성 및 부착 성능에 미치는 영향 (Effect of Oxidation of Graphene Nanoplatelets on the Mechanical Properties and Bonding Performance of Epoxy Paints)

  • 천성호;김규용;이상규;황의철;손민재;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.31-32
    • /
    • 2019
  • In this study, oxidized graphene nanoplatelet(GO) was prepared by oxidizing graphene nanoplatelet(GNP) with nitric acid in order to solve the problem of dispersion of GNP, one of nano materials. GNP/Epoxy and GO/Epoxy paint were prepared by mixing GNP, GO with 0.1, 0.3, 0.5 and 1.0 wt.% in epoxy paint and the mechanical properties were evaluated. As a result, GNP/Epoxy and GO/Epoxy paints showed better mechanical properties than Neat Epoxy which did not incorporate GNP, GO. Especially, when 0.3 wt.% of GO was incorporated into epoxy resin, it showed higher tensile strength than Neat Epoxy. It was confirmed that acid treatment of GNP was effective in improving the mechanical properties of epoxy paint. However, graphene material was found that it was not effective in improving the bond performance of the epoxy paint.

  • PDF

Effect of Particle Size and Dispersion on Dielectric Properties in ZnO/Epoxy Resin Composites

  • Yang, Wenhu;Yi, Ran;Yang, Xu;Xu, Man;Hui, Sisi;Cao, Xiaolong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권3호
    • /
    • pp.116-120
    • /
    • 2012
  • In this paper, ZnO-Epoxy nanocomposites (NEP) were prepared and epoxy composites that contain 5 wt% micro ZnO (MEP) and deliberately not well dispersed nano ZnO (NDNEP) were also prepared for purpose of comparison. The effects of the particle size and dispersion of ZnO on dielectric properties of epoxy resin were chiefly studied. Test results showed that: at a loading of 5 wt%, the three epoxy composites seem to have no significant difference on resistivity compared to epoxy resin; Dielectric constants of all the epoxy composites are also basically the same but they are bigger compared to that of the pure epoxy resin (unfilled); Dielectric dissipation factors ($tan{\delta}$) of NDNEP is greater than that of NEP and MEP. NEP has the minimum dielectric loss factor, whereas dielectric loss factors of the three epoxy composites are larger than that of the pure epoxy resin. The decreasing order of electrical breakdown strength for the three epoxy composites and for the pure epoxy resin is as follows: NEP>MEP>NDNEP>EP. Finally, in order to explain the experimental results the aggregation interface phase was proposed. Furthermore, addition of well dispersed nano filler has proved to have a positive effect on the improvement of the dielectric properties of epoxy resin.

석조 문화재 보존용 저황변 Epoxy의 제조 및 물성 연구 (Preparation and Physical Properties of Epoxy with Improved Yellowing Resistance for the Preservation of Stone Cultural Heritage)

  • 이승연;오승준;위광철
    • 박물관보존과학
    • /
    • 제26권
    • /
    • pp.1-12
    • /
    • 2021
  • 석조 문화재 보존처리 시 사용되고 있는 Bisphenol A계 Epoxy 수지의 Yellowing 현상개선과 재료의 다양성 확보를 위해 hydrogenated Bisphenol A계 주제 기반의 석조 문화재 보존용 Epoxy 수지를 제조하여 물성 비교 실험을 진행하였다. 실험 결과 제조한 Epoxy 수지가 인장강도, 접착 강도, 가공성에서 기존 재료보다 향상된 물성을 확인할 수 있었으며, 황변성은 약 5 ~ 8배 개선되었다. 이러한 결과는 대부분이 야외에 위치한 석조 문화재의 특성상 안정적인 보존 재료로서의 적용이 가능할 것으로 판단된다.

Solid Epoxy를 이용한 패키지 및 솔더 크랙 신뢰성 확보를 위한 실험 및 수치해석 연구 (Experimental and Numerical Analysis of Package and Solder Ball Crack Reliability using Solid Epoxy Material)

  • 조영민;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제27권1호
    • /
    • pp.55-65
    • /
    • 2020
  • 반도체 패키지에서 언더필의 사용은 패키지의 응력 완화 및 습기 방지에 중요할 뿐만 아니라, 충격, 진동 시에 패키지의 신뢰성을 향상시키는 중요한 소재이다. 그러나 최근 패키지의 크기가 커지고, 매우 얇아짐에 따라서 언더필의 사용이 오히려 패키지의 신뢰성을 저하하는 현상이 발견되고 있다. 이러한 이슈를 해결하기 위하여 본 연구에서는 언더필을 대신 할 소재로서 solid epoxy를 이용한 패키지를 개발하여 신뢰성을 향상시키고자 하였다. 개발된 solid epoxy를 스마트 폰의 AP 패키지에 적용하여 열사이클링 신뢰성 시험과 수치해석을 통하여 패키지의 신뢰성을 평가하였다. 신뢰성 향상을 위한 최적의 solid epoxy 소재 및 공정 조건을 찾기 위하여 solid epoxy 의 사용 개수, PCB 패드 타입 및 solid epoxy의 물성 등, 3 개의 인자가 패키지의 신뢰성에 미치는 영향을 고찰하였다. Solid epoxy를 AP 패키지에 적용한 결과 solid epoxy가 없는 경우 보다, solid epoxy를 적용한 경우가 신뢰성이 향상되었다. 또한 solid epoxy를 패키지의 외곽 4곳에 적용한 경우 보다는 6 곳에 적용한 경우가 더 신뢰성이 좋음을 알 수 있었다. 이는 solid epoxy가 패키지의 열팽창에 따른 응력을 완화 시키는 역할을 하여 패키지의 신뢰성이 향상되었음을 의미한다. 또한 PCB 패드 타입에 대한 신뢰성을 평가한 결과 NSMD (non-solder mask defined) 패드를 사용할 경우가 SMD (solder mask defined) 패드 보다 신뢰성이 더 향상됨을 알 수 있었다. NSMD 패드의 경우 솔더와 패드가 접합하는 면적이 더 크기 때문에 구조적으로 안정하여 신뢰성 측면에서 더 유리하기 때문이다. 또한 열팽창계수가 다른 solid epoxy를 적용하여 신뢰성 평가를 한 결과, 열팽창계수가 낮은 solid epoxy를 사용한 경우가 신뢰성이 더 향상됨을 알 수 있었다.

Epoxy를 사용한 수분산 폴리우레탄의 합성 및 물성 (Synthesis and Properties of Waterborne Polyurethane Using Epoxy Group (WPUE))

  • 박지연;정부영;천정미;하창식;천제환
    • 접착 및 계면
    • /
    • 제16권1호
    • /
    • pp.22-28
    • /
    • 2015
  • 본 연구에서는 수분산 폴리우레탄의 내가수분해성 및 접착력을 향상시키기 위하여 polyester polyol, epoxy resin, 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$), dimethylol propionic acid (DMPA)를 사용하여 epoxy를 함유한 수분산 폴리우레탄을 합성하였다. 또한 합성된 수분산 폴리우레탄의 물성은 DSC, UTM, adhesion test 등을 통해 평가하였다. 합성된 수분산 폴리우레탄의 Tg는 $-50^{\circ}C$ 부근에서 나타났으며, epoxy resin의 함량이 증가함에 따라 Tg도 상승하는 결과를 나타내었다. Epoxy resin의 함량이 증가함에 따라 인장강도는 증가하였고, 신율은 감소하였다. 또한 접착력 및 내가수분해 접착력은 polyol : epoxy = 99 : 1에서 최고값을 나타내었다.

고온 시효 시험에 따른 Epoxy 솔더 접합부의 접합 특성 평가 (Evaluation of Bonding Properties of Epoxy Solder Joints by High Temperature Aging Test)

  • 강민수;김도석;신영의
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.6-12
    • /
    • 2019
  • Bonding properties of epoxy-containing solder joints were investigated by a high temperature aging test. Specimens were prepared by bonding an R3216 standard chip resistor to an OSP-finished PCB by a reflow process with two basic types of solder (SAC305 & Sn58Bi) pastes and two epoxy-solder (SAC305+epoxy & Sn58Bi+epoxy) pastes. In all epoxy solder joints, an epoxy fillet was formed in the hardened epoxy, lying around the outer edge of the solder joint, between the chip and the Cu pad. In order to analyze the bonding characteristics of solder joints at high temperatures, a high-temperature aging test at $150^{\circ}C$ was carried out for 14 days (336 h). After aging, the intermetallic compound $Cu_6Sn_5$ was found to have formed in the solder joint on the Cu pad, and the shear stress on the conventional solder joint was reduced by a significant amount. The reason that the shear force did not decrease much, even though in epoxy solder, was thatbecause epoxy hardened at the outer edge of the supported solder joints. Using epoxy solder, strong bonding behavior can be ensured due to this resistance to shear force, even in metallurgical changes such as those where intermetallic compounds form at solder joints.