• Title/Summary/Keyword: epoxy

Search Result 3,679, Processing Time 0.112 seconds

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo;Sarada Prasad Parida;Pankaj Charan Jena
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.529-540
    • /
    • 2023
  • A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

A study on the effective fault current limiting characteristics of stacked coated conductors with stainless steel stabilizer (스테인리스 스틸 안정화재를 가진 coated conductor의 적층 유무에 따른 효과적인 사고전류 제한을 위한 연구)

  • Na, J.B.;Ahn, M.C.;Kim, M.J.;Kim, Y.J.;Yang, S.E.;Park, D.K.;Kim, H.M.;Seok, B.Y.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2007
  • Coated conductor(CC) is recently in actively progress for the research and development, and its can be used various stabilizer lot the specific requirements for each application. Among various superconducting applications, coated conductor applied to superconducting fault current limiters(SFCLS) bypasses fault current to its stabilizer, where the surge is abruptly reduced ; thus, stainless steel, which has large resistivity can be a suitable stabilizer for SFCLS. Despite high n-value of the YBCO, CC stabilized with stainless steel did not effectively limit the first peak fault current. In the short circuit test results of AMSC's 344S, a half period delay was observed between the fault and the generation of resistance(60Hz). In this paper, we performed short-circuit experiments with stacked and unstacked CC and compared the test results to analyze effective fault current limiting characteristics. we compared time of the generated resistance as the fault current limiting characteristics and made the samples one is the stacked CC and the other is unstacked CC. These samples were used equal numbers of pieces of CC. In addition, comparison and analysis was made for the stacked structure by measuring fault current limiting characteristics with respect to thermal insulation by impregnating with epoxy resin.

Development of Glass Fiber Composite Material to Extend the Life of Fly Ash Transport Pipe: Wear Test (비회 운송관의 수명연장을 위한 유리섬유 복합재의 개발: 내마모성 평가)

  • Jeong, Gyu-Sang;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • In this study, a fiber reinforced plastic (FRP) pipe with superior wear resistance was developed to replace the fly ash pipe of cast iron. Wear test was performed with various combinations of SiC filler and resin materials of unsaturated polyester, vinylester, epoxy, and phenol. Test results of ASTM D4060 showed the optimal combinations of resin, filler size, and resin/filler ratios. Test results of comparison between FRP and cast iron showed the possibility to replace cast iron pipe with the FRP pipe. Field test executed to compare the wear resistance between cast iron pipe and developed FRP pipe showed the superiority of the FRP pipe.

Tensile Properties of CERP Composite with Different Resin Composition under Cryogenic Temperature (극저온 환경에서 탄소섬유강화 복합재료의 수지조성변화에 따른 인장 물성 측정)

  • Kim, Myung-Gon;Kang, Sang-Guk;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2007
  • In this study, carbon fiber reinforced polymeric (CFRP) composites with different resin composition were manufactured and resin formulation in composite materials were presented through tensile tests for cryogenic use. Thermo-mechanical cyclic loading (up to 6 cycles) was applied to CFRP unidirectional laminate specimens from room temperature to $-150^{\circ}C$. Tensile tests were then performed at $-150^{\circ}C$ using an environmental test chamber. In addition, matrix-dominant properties such as the transverse and in-plane shear characteristics of each composite model were measured at $-150^{\circ}C$ to examine the effects of resin formulation on their interfacial properties. The tensile tests showed that the composite models with large amounts of bisphenol-A epoxy and CTBN modified rubber in their resin composition had good mechanical performance at cryogenic temperature (CT).

An Evaluation of Structural Integrity and Crashworthiness of Automatic Guideway Transit(AGT) Vehicle made of Sandwich Composites (샌드위치 복합재 적용 자동무인경전철 차체 구조물의 구조 안전성 및 충돌 특성 평가 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Cho, Se-Hyun;Kim, Dea-Hwan
    • Composites Research
    • /
    • v.21 no.5
    • /
    • pp.15-22
    • /
    • 2008
  • This paper describes the results of structural integrity and crashworthiness of Automatic Guideway Transit(AGT) vehicle made of sandwich composites. The applied sandwich composite of vehicle structure was composed of aluminum honeycomb core and WR580/NF4000 glass fabric/epoxy laminate composite facesheet. Material testing was conducted to determine the input parameters for the composite facesheet model, and the effective equivalent damage model fer the orthotropic honeycomb core material. The finite element analysis using ANSYS v11.0 was dont to evaluate structural integrity of AGT vehicle according to JIS E 7105 and ASCE 21-98. Crashworthiness analysis was carried out using explicit finite element code LS-DYNA3D with the lapse of time. The crash condition was frontal accident with speed of 10km/h at rigid wall. The results showed that the structural integrity and crashworthiness of AGT vehicle were proven under the specified loading and crash conditions. Also, the modified Chang-Chang failure criterion was recommended to evaluate the failure modes of composite structures after crashworthiness event.

A Study on Structural Test and Derivation of Standard Finite Element Model for Composite Vehicle Structures of Automated People Mover (자동무인경전철 복합재 차체 구조물의 구조 시험 및 해석적 검증에 의한 유한요소 모델 도출 연구)

  • Ko, Hee-Young;Shin, Kwang-Bok;Kim, Dae-Hwan
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.1-7
    • /
    • 2009
  • The vehicle structure of Automated People Mover(APM) made of aluminum honeycomb sandwich with WR580INF4000 glass-fabric epoxy laminate facesheets was evaluated by structural test and finite element analysis. The test of the vehicle structure was conducted according to JIS E 7105. The structural integrity of vehicle structure was evaluated by stress, deflection and natural frequency obtained from dial-gauge and acceleration sensor. And the proposed finite element models were compared with the results of structural test. The results of finite element analysis showed good agreement with those of structural test. Also, in order to improve the stiffness of vehicle structure, the modified underframe model with reinforced side sill was proposed in design stage. The composite vehicle structures with modified underframe model had the improved structural stiffness about 44%.

Study on the numerical model of complex permittivity of composites based on the percolation theory (퍼콜레이션 이론에 기초한 복합재료의 복소 유전율 모델에 대한 연구)

  • Kim, Jin-Bong;Lee, Sang-Kwan;Kim, Chun-Gon
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.44-54
    • /
    • 2009
  • In this paper, we proposed a numerical model the complex permittivity for the E-glass fabric/epoxy composite laminate containing electrical conductive carbon black. The model is based on the percolation theory and for the composites over than the percolation threshold and in higher frequency band in that the AC conductivity is fully proportional to the frequency. The measurement for the complex permittivity wasperformed at the frequency band of 0.5 GHz $\sim$ 18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The proposed model is composed of the numerical equations of the scaling law used in percolation theory and constants obtained from experiments to quantify the model itself. The model describes the complex permittivity as the function of frequency and filler concentration. The model was verified by being compared with the measurements.

Manufacturing Technology and Evaluation for X-ray Transmission Performance of CT Cradle composed of Sandwich Composites (샌드위치 복합재로 구성된 CT(Computed Tomography) 장비 Cradle 제작기술 및 X선 투과성능 평가)

  • Lee, Sang-Jin;Kim, Jong-Chul;Kim, Min-Woo;Park, Ja-Yeon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.13-17
    • /
    • 2009
  • This paper decided the 3D shape of sandwich composite for the cradle of CT instrument, suggested the stacking sequence with satisfaction on structural criteria using the Finite Element Analysis, and introduced the manufacturing method to meet the X-ray transmission performance uniformly. The design of Cradle was considered the space between other parts, fixing method, and assembly condition with headrest part. It is decided the stacking sequence to meet the criteria that the deflection at the end point is less than 20 mm when it is applied to 135 kg load at the specific locations. In site of manufacturing method, at first, it is used the hand lay-up for carbon UD and carbon fabric/polyester resin, but it had the ununiform X-ray transmission performance due to the void and excess resin. For solving this problem, it was replaced with the infusion method for the first layer of face material and the application of carbon UD or fabric/epoxy resin prepreg for other layers. Therefor, the property of X-ray transmission was improved.

Material Qualification, Equivalency, and Acceptance Test for Aerospace Composite Materials (복합재료의 인증, 동등성 및 수락시험)

  • Lee Ho-Sung
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.1-6
    • /
    • 2006
  • The civilian and military agencies require the use of statistic-based allowable to design aerospace vehicles with composite materials. In order to comply this regulation, it is necessary to establish relatively large amount of database, which increases test costs and time. Recently NASA/FAA developed the new method which can satisfy the regulation with smaller test matrix through AGATE(Advanced General Aviation Transport Experiments) program. Especially the concept of material equivalency is very useful when the material has been certified in previous program, and it allows the engineer to use the database with the addition of small test matrix. This paper summarizes the material equivalency and acceptance test methodology so that composite material database can be shared and improve the credibility of the material quality. As a demonstration, the material design allowable of the high temperature carbon/epoxy composite developed domestically was determined with this methodology.