• Title/Summary/Keyword: epoxidation

Search Result 102, Processing Time 0.022 seconds

Polyvinylchloride Plasticized with Acetylated Monoglycerides Derived from Plant Oil (아세틸화 모노글리세라이드계 가소제 합성 및 PVC 가소성능에 관한 연구)

  • Lee, Sangjun;Yuk, Jeong-Suk;Kim, A-Ryeon;Choung, Ji Sun;Shin, Jihoon;Kim, Young-Wun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.42-49
    • /
    • 2017
  • To replace phthalate plasticizer for PVC, acetylated monoglyceride (AMG) plasticizers were prepared from plant oil and their plasticization effects were also investigated. Transesterification of coconut oil by glycerol followed by acetylation with acetic anhydride gave AMG-CoCo (Coco : Coconut Oil). In addition, AMG-GMO (GMO : Glycerol monooleate) and AMG-GMO-Epoxy were synthesized by acetylation and epoxidation with glycerol monooleate. It was found that the thermal stability of AMG plasticizers increased in the following order: AMG-GMO-Epoxy > AMG-GMO > AMG-CoCo and all three plasticizers were thermally more stable than those of common petroleum-based plasticizer DOP (Dioctyl phthalate). The tensile strain values of the PVC containing AMG compounds were ca. 770~810%, while tensile strength values were ca. 19~22 MPa, which were higher than those of PVC containing DOP. DMA (Dynamic Mechanical Analysis) results showed that the miscibility of AMG-GMO-Epoxy in PVC was excellent and the $T_g$ of PVC containing AMG-GMO-Epoxy at 50 phr decreased down to $24^{\circ}C$. Finally, the leaching experiment result showed that the weight loss values of PVC containing AMG-GMO and AMG-GMO-Epoxy at 50 phr were as low as 2 and 1%, respectively, indicating that they have high water migration resistance. The above findings suggested that AMG-GMO-Epoxy could be one of plant oil-based PVC plasticizers to replace DOP.

Purification and Characterization of Gibberellin $3Beta$-Hydroxylase from Immature Seeds of Phaseolus vulgaris (강낭콩미숙종자로부터 Gibberellin $3Beta$-Hydroxylase 정제 및 성질)

  • 곽상수
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.133-148
    • /
    • 1987
  • Gibberellin(GA) 3-$\beta$ hydroxylation is very important for the shoot elogation in the higher plants, since only 3$\beta$-hydryoxylated GAs promote shoot elogation in several plants. Fluctuation of 3$\beta$-hydryoxylase activity was examined during seed maturation using two cultivars of , P. vulgaris, Kentucky Wonder (normal) and Masterpiece (dwarf). Very immature seeds of both cultivars contain high level of 3$\beta$-hydroxylase activity (per mg protein). Both cultivars showed maximum of enzyme activity (per seed) in the middle of their maturation process. Gibberellin 3$\beta$-hydroxylase catalyzing the hydroxylation of GA20 to GA1 was purified 313-fold from very early immature seeds of P. vulgaris. Crude soluble enzyme extracts were purified by 15% methanol precipitation, hydrophobic interaction chromatogrphy, DEAE ion exchange column chromatography and gel filtration HPLC. The 3$\beta$-hydroxylase activity was unstable and lost much of its activity duting the purification. The molecular weight of purified enzyme was extimated to be 42, 000 by gel filtration HPLC and SDS-PAGE. The enzyme exhibited maximum activity at pH 7.7. The Km values for [2.3-3H] GA20 and [2.3-3H]GA9 were 0.29 $\mu$M and 0.33 $\mu$M, respectively. The enzyme requires 2-oxoglutarate as a cosubstrate; the Km value for 2-oxoglutarate was 250 $\mu$M using 3H GA20 as a substrate. Fe2+ and ascorbate significantly activated the enzyme at all purification steps, while catalase and BSA activated the purified enzyme only. The enzyme was inhibited by divalent cations Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+. Effects of several GAs and GA anaogues on the putrified 3$\beta$-hydroxylase were examined using [3H]GA9 and GA20 as a substrates. Among them, GA5, GA9, GA15, GA20 and GA44 inhibited the enzyme activity. [13C, 3H] GA20 was converted by the partially purified enzyme preparation to [13C, 3H]GA1, GA5 and GA6, which were identified by GC-MS, GA9 was converted only GA4, GA15 and GA44 were converted to GA37 and GA38, respectively. GA5 was epoxidized to GA6 by the preparation. This suggests that 3$\beta$-hydroxylation of GA20 and epoxidation of GA5 are catalyzed by the same enzyme in P, vulgaris.

  • PDF