• Title/Summary/Keyword: epitaxial strain

Search Result 40, Processing Time 0.028 seconds

Characteristics of BSCCO Thin Film by Layer-by-layer Deposition (순차 스퍼터 법에 의한 BSCCO 박막의 특성)

  • 이희갑;박용필;김귀열;오금곤;최운식;조춘남
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.281-283
    • /
    • 2001
  • Bi$_2$Sr$_2$CuO$\_$x/(Bi-2201) thin films were fabricated layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to SrBi$_2$O$_4$ by in-situ anneal.

  • PDF

Strain evolution in Tin Oxide thin films deposited by powder sputtering method

  • Cha, Su-Yeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.283.1-283.1
    • /
    • 2016
  • Tin Oxide(SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. It would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. In addition, SnO2 is commonly used as gas sensors. To fabricate high quality epitaxial SnO2 thin films, a powder sputtering method was used, in contrast to typical sputtering technique with sintered target. Single crystalline sapphire(0001) substrates were used. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using X-ray diffraction, scanning electron microscopy, and atomic force microscopy measurements. We found that the strain evolution of the samples was highly affected by gas environment and growth rate, resulted in the delamination under O2 environment.

  • PDF

Thermal Behavior and Crystallographic Characteristics of an Epitaxial C49-$TiSi_2$ Phase Formed in the Si (001) Substrate by $N_2$Treatment (Si (001) 기판에서 $N_2$처리에 의해 형성된 에피택셜 C49-$TiSi_2$상의 열적 거동과 결정학적 특성에 관한 연구)

  • Yang, Jun-Mo;Lee, Wan-Gyu;Park, Tae-Soo;Lee, Tae-Kwon;Kim, Joong-Jung;Kim, Weon;Kim, Ho-Joung;Park, Ju-Chul;Lee, Soun-Young
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • The thermal behavior and the crystallographic characteristics of an epitaxial $C49-TiSi_2$ island formed in a Si (001) substrate by $N_2$, treatment were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found from the analyzed results that the epitaxial $C49-TiSi_2$ was thermally stable even at high temperature of $1000^{\circ}C$ therefore did not transform into the C54-stable phase and did not deform morphologically. HRTEM results clearly showed that the epitaxial $TiSi_2$ phase and Si have the orientation relationship of (060)[001]$TiSi_2$//(002)[110]Si, and the lattice strain energy at the interface was mostly relaxed by the formation of misfit dislocations. Furthermore, the mechanism on the formation of the epitaxial $_C49-TiSi2$ in Si and stacking faults lying on the (020) plane of the C49 Phase were discussed through the analysis of the HRTEM image and the atomic modeling.

  • PDF

Colossal Magnetoresistance in La-Ca-Mn-O

  • Jin, Sungho
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • Very large in electrical resistivity by several orders of magnitude is obtained when an external magnetic field is applied to the colossal magnetoresistnace (CMR) materials such as La-Ca-Mn-O. The magnetoresistance is strongly temperature-dependent, and exhibits a sharp peak below room temperature, which can be shifted by adjusting the composition or processing parameters. The control of lattice geometry or strain, e.g., by chemical substitution, epitaxial growth or post-deposition anneal of thin films appears to be crucial in obtaining the CMR properties. The orders of magnitude change in electrical resistivity could be useful for various magnetic and electric device applications. .

  • PDF

Lattice strain effects on superconductivity in $La_{2-x}Sr_{x}CuO_{4}$ single-crystalline films grown by IR-LPE technique

  • Tanaka, I.;Islam, A.T.M.N.;Wataudhi, S.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.172-175
    • /
    • 2003
  • We have investigated effects of the lattice mismatch between the LPE films and the substrates. We have grown $La_{2-x}Sr_{x}CuO_{4}$(x=0.1 to 0.15) single crystalline films on single crystalline substrates having different lattice parameter ratio c/a e.g., $La_{2-x}Sr_{x}Cu_{1-y}Zn_{y}O_{4},\;La_{2-x}Ba_{x}CuO_{4},\; LaSrAlO_{4}\;and\;La_{2-x}Sr_{x}Cu_{1-y}Al_{y}O_{4}$ etc., using the IR-LPE technique. The superconducting properties of the grown films were found to vary significantly depending on the lattice mismatch with different substrates.

MBE growth of topological insulator $Bi_2Se_3$ films on Si(111) substrate

  • Kim, Yong-Seung;Bansa, Namrata;Edrey, Eliav;Brahlek, Mathew;Horibe, Yoichi;Iida, Keiko;Tanimura, Makoto;Li, Guo-Hong;Feng, Tian;Lee, Hang-Dong;Gustafsson, Torgny;Andrei, Eva;Cheong, Sang-Wook;Oh, Seong-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.59-59
    • /
    • 2011
  • We will report atomically sharp epitaxial growth of $Bi_2Se_3$ three-dimensional topological insulator films on Si(111) substrate with molecular beam epitaxy (MBE). It was achieved by employing two step growth temperatures to prevent any formation of second phase, like as $SiSe_2$ clusters, between $Bi_2Se_3$ and Si substrate at the early stage of growth. The growth rate was determined completely by Bi flux and the Bi:Se flux ratio was kept ~1:15. The second-phase-free atomically sharp interface was verified by RHEED, TEM and XRD. Based on the RHEED analysis, the lattice constant of $Bi_2Se_3$ relaxed to its bulk value during the first quintuple layer implying the absence of strain from the substrate. Single-crystalline XRD peaks of $Bi_2Se_3$ were observed in films as thin as 4 QL. TEM shows full epitaxial structure of $Bi_2Se_3$ film down to the first quintuple layer without any second phases. This growth method was used to grow high quality epitaxial $Bi_2Se_3$ films from 3 QL to 3600 QL. The magneto-transport properties of these thin films show a robust 2D surface state which is thickness independent.

  • PDF

SiGe Nanostructure Fabrication Using Selective Epitaxial Growth and Self-Assembled Nanotemplates

  • Park, Sang-Joon;Lee, Heung-Soon;Hwang, In-Chan;Son, Jong-Yeog;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.24.2-24.2
    • /
    • 2009
  • Nanostuctures such as nanodot and nanowire have been extensively studied as building blocks for nanoscale devices. However, the direct growth of the nanostuctures at the desired position is one of the most important requirements for realization of the practical devices with high integrity. Self-assembled nanotemplate is one of viable methods to produce highly-ordered nanostructures because it exhibits the highly ordered nanometer-sized pattern without resorting to lithography techniques. And selective epitaxial growth (SEG) can be a proper method for nanostructure fabrication because selective growth on the patterned openings obtained from nanotemplate can be a proper direction to achieve high level of control and reproducibility of nanostructucture fabrication. Especially, SiGe has led to the development of semiconductor devices in which the band structure is varied by the composition and strain distribution, and nanostructures of SiGe has represented new class of devices such nanowire metal-oxide-semiconductor field-effect transistors and photovoltaics. So, in this study, various shaped SiGe nanostructures were selectively grown on Si substrate through ultrahigh vacuum chemical vapor deposition (UHV-CVD) of SiGe on the hexagonally arranged Si openings obtained using nanotemplates. We adopted two types of nanotemplates in this study; anodic aluminum oxide (AAO) and diblock copolymer of PS-b-PMMA. Well ordered and various shaped nanostructure of SiGe, nanodots and nanowire, were fabricated on Si openings by combining SEG of SiGe to self-assembled nanotemplates. Nanostructure fabrication method adopted in this study will open up the easy way to produce the integrated nanoelectronic device arrays using the well ordered nano-building blocks obtained from the combination of SEG and self-assembled nanotemplates.

  • PDF

Stress Concentration Effects on the Nucleation of the Structural Defects in Highly Strained Heteroepitaxial Layers (高變形된 異種 에피층에서 응력 집중이 결정결함 생성에 미치는 영향)

  • Kim, Sam-Dong;Lee, Jin-Koo
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.615-621
    • /
    • 2001
  • We carried out the kinetic model calculations in order to estimate the nucleation rates for two kinds of half-loop dislocations in highly strained hetero-epitaxial growths; $60^{\circ}$dislocations and twinning dislocations. The surface defects and the stress concentration effects were considered in this model, and the remaining elastic strain of the epilayers with increasing film thickness was taken into account by using the modified Matthews' relation. The calculations showed that the stress concentration effect at surface imperfections is very important for describing the defect generation in highly mismatched epitaxial growth. This work also showed that the stress concentration effect determined the type of dislocation nucleating dominantly at early growth stages in accordance with our XTEM (cross-section transmission electron microscopy) defect observation.

  • PDF

TEXTURE AND RELATED MICROSTRUCTURE AND SURF ACE TOPOGRAPHY OF VAPOR DEPOSITS

  • Lee, Dong-Nyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.301-313
    • /
    • 1996
  • The texture of vapor deposits(PVD and CVD) changes from the orientation that places the lowest energy lattice plane parallel to the substrate under the condition of low atom or ion concentration adjacent to the deposit, to the orientation that places the higher energy crystal planes parallel to the substrate as the atom or ion concentration adjacent to the deposit increases. However, in the early stage of deposition, the deposit-substrate interface energy and the surface energy constitute the most important energies of the system. Therefore, if the lattice match is established between the substrate and the deposit without generating much strain energy, the epitaxial growth takes place to reduce the interfacial energy. When the epitaxial growth does not take place, the surface energy is dominant in the early stage of deposition and the lowest energy crystal plane tends to be placed parallel to the substrate up to a critial thickness. The thickness depends on the deposition condition. If the deposition condition does not favor placing the lowest energy crystal plane parallel to the substrate, the initial texture will change to that compatible with the deposition condition as the film thickness increases, and the texture turnover thickness will be short. The microstructure and surface topography of deposits are related to their texture.

  • PDF

Sticking Characteristics in BiSrCaCuO Thin Film Fabricated by Layer-by-Layer Sputtering Method (순차 스퍼터법으로 제작한 BiSrCaCuO 박막의 부착 특성)

  • Cheon, Min-Woo;Park, Yong-Pil;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.45-48
    • /
    • 2003
  • BiSrCaCuO thin films were fabricated by atomic layer-by-layer deposition using an ion beam sputtering method. 10 wt% and 90 wt% ozone mixed with oxygen were used with ultraviolet light irradiation to assist oxidation. At early stages of the atomic layer by layer deposition, two dimensional epitaxial growth which covers the substrate surface would be suppressed by the stress and strain caused by the lattice misfit, then three dimensional growth takes place. Since Cu element is the most difficult to oxidize, only Sr and Bi react with each other predominantly, and forms a buffer layer on the substrate in an amorphous-like structure, which is changed to $SrBi_2O_4$ by in-situ anneal.

  • PDF