• 제목/요약/키워드: epigenetic process

검색결과 44건 처리시간 0.027초

후성 유전학적 리프로그래밍과 클로닝 (Epigenetic Reprogramming and Cloning)

  • 한용만;강용국;구덕본;이경광
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권2호
    • /
    • pp.61-68
    • /
    • 2003
  • 포유동물의 초기 발생과정 중 접합체가 전능성이나 다능성을 가지기 위해서는 전반적인 DNA 메틸화를 포함하는 후성 유전학적 리프로그래밍의 복잡한 과정을 거쳐야만 한다. 본 연구팀에서는 공여핵의 후성 유전학적 리프로그래밍 과정을 조사하기 위하여 소 복제수정란에서 메틸화 양상을 분석하였다. 복제수정란의 비정상적인 메틸화 양상이 다양한 반복염기서열에서 관찰되었지만 single-copy유전자들의 염기서열은 정상적인 메틸화 양상을 보여주었다. 전반적으로 복제수정란의 전반적인 메틸화 상태는 정상수정란과 완전히 다른 양상을 보여주었다. 또한 복제 배반포의 영양외배엽세포에서 특이적으로 높은 메틸화 수준은 현 복제동물에서 빈번히 나타나는 불완전한 태반형성에 작용할 수 있을 것이다. 결론적으로 복제수정란의 비정상적 발생은 공여핵의 불완전한 후성 유전학적 리프로그래밍에 기인할 수 있다는 사실을 제시하게 되었다. 이러한 공여핵의 후성 유전학적 과정의 이해는 복제수정란의 비정상적 발생을 보다 분명히 밝힐 수 있을 것이다.

  • PDF

Identification of Protein Arginine Methyltransferase 5 as a Regulator for Encystation of Acanthamoeba

  • Moon, Eun-Kyung;Hong, Yeonchul;Chung, Dong-Il;Goo, Youn-Kyoung;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제54권2호
    • /
    • pp.133-138
    • /
    • 2016
  • Encystation is an essential process for Acanthamoeba survival under nutrient-limiting conditions and exposure to drugs. The expression of several genes has been observed to increase or decrease during encystation. Epigenetic processes involved in regulation of gene expression have been shown to play a role in several pathogenic parasites. In the present study, we identified the protein arginine methyltransferase 5 (PRMT5), a known epigenetic regulator, in Acanthamoeba castellanii. PRMT5 of A. castellanii (AcPRMT5) contained domains found in S-adenosylmethionine-dependent methyltransferases and in PRMT5 arginine-N-methyltransferase. Expression levels of AcPRMT5 were increased during encystation of A. castellanii. The EGFP-PRMT5 fusion protein was mainly localized in the nucleus of trophozoites. A. castellanii transfected with siRNA designed against AcPRMT5 failed to form mature cysts. The findings of this study lead to a better understanding of epigenetic mechanisms behind the regulation of encystation in cyst-forming pathogenic protozoa.

Genetic and Epigenetic Biomarkers on the Personalized Nutrition

  • An Sung-Whan
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2004년도 Annual Meeting and International Symposium
    • /
    • pp.271-274
    • /
    • 2004
  • Nutritional genomics is a new field of study of how nutrition interacts with an individual's genome or individual responds to individual diets. Systematic approach of nutritional genomics will likely provide important clues about responders and non-responders. The current interest in personalizing health stems from the breakthroughs emerging in integrative technologies of genomics and epigenomics and the identification of genetic and epigentic diversity in individual's genetic make-up that are associated with variations in many aspects of health, including diet-related diseases. Microarray is a powerful screen system that is being also currently employed in nutritional research. Monitoring of gene expression at genome level is now possible with this technology, which allows the simultaneous assessment of the transcription of tens of thousands of genes and of their relative expression of pathological cells such tumor cells compared with that of normal cells. Epigenetic events such as DNA methylation can result in change of gene expression without involving changes in gene sequence. Recent developed technology of DNAarray-based methylation assay will facilitate wide study of epigenetic process in nutrigenomics. Some of the areas that would benefitfrom these technologies include identifying molecular targets (Biomarkers) for the risk and benefit assessment. These characterized biomarkers can reflect expose, response, and susceptibility to foods and their components. Furthermore the identified new biomarker perhaps can be utilized as a indicator of delivery system fur optimizing health.

  • PDF

5-Aza-2'-deoxycytidine Induces Hepatoma Cell Apoptosis via Enhancing Methionine Adenosyltransferase 1A Expression and Inducing S-Adenosylmethionine Production

  • Liu, Wei-Jun;Ren, Jian-Guo;Li, Ting;Yu, Guo-Zheng;Zhang, Jin;Li, Chang-Sheng;Liu, Zhi-Su;Liu, Quan-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6433-6438
    • /
    • 2013
  • In hepatocellular cancer (HCC), lack of response to chemotherapy and radiation treatment can be caused by a loss of epigenetic modifications of cancer cells. Methionine adenosyltransferase 1A is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation. Therefore, drugs releasing epigenetic repression have been proposed to reverse this process. We studied the effect of the demethylating reagent 5-aza-2'-deoxycitidine (5-Aza-CdR) on MAT1A gene expression, DNA methylation and S-adenosylmethionine (SAMe) production in the HCC cell line Huh7. We found that MAT1A mRNA and protein expression were activated in Huh7 cells with the treatment of 5-Aza-CdR; the status of promoter hypermethylation was reversed. At the same time, MAT2A mRNA and protein expression was significantly reduced in Huh7 cells treated with 5-Aza-CdR, while SAMe production was significantly induced. However, 5-Aza-CdR showed no effects on MAT2A methylation. Furthermore, 5-Aza-CdR inhibited the growth of Huh7 cells and induced apoptosis and through down-regulation of Bcl-2, up-regulation of Bax and caspase-3. Our observations suggest that 5-Aza-CdR exerts its anti-tumor effects in Huh7 cells through an epigenetic change involving increased expression of the methionine adenosyltransferase 1A gene and induction of S-adenosylmethionine production.

Histone tail cleavage as a novel epigenetic regulatory mechanism for gene expression

  • Yi, Sun-Ju;Kim, Kyunghwan
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.211-218
    • /
    • 2018
  • Chromatin is an intelligent building block that can express either external or internal needs through structural changes. To date, three methods to change chromatin structure and regulate gene expression have been well-documented: histone modification, histone exchange, and ATP-dependent chromatin remodeling. Recently, a growing body of literature has suggested that histone tail cleavage is related to various cellular processes including stem cell differentiation, osteoclast differentiation, granulocyte differentiation, mammary gland differentiation, viral infection, aging, and yeast sporulation. Although the underlying mechanisms suggesting how histone cleavage affects gene expression in view of chromatin structure are only beginning to be understood, it is clear that this process is a novel transcriptional epigenetic mechanism involving chromatin dynamics. In this review, we describe the functional properties of the known histone tail cleavage with its proteolytic enzymes, discuss how histone cleavage impacts gene expression, and present future directions for this area of study.

Advances towards Controlling Meiotic Recombination for Plant Breeding

  • Choi, Kyuha
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.814-822
    • /
    • 2017
  • Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.

Genetic Architecture of Transcription and Chromatin Regulation

  • Kim, Kwoneel;Bang, Hyoeun;Lee, Kibaick;Choi, Jung Kyoon
    • Genomics & Informatics
    • /
    • 제13권2호
    • /
    • pp.40-44
    • /
    • 2015
  • DNA microarray and next-generation sequencing provide data that can be used for the genetic analysis of multiple quantitative traits such as gene expression levels, transcription factor binding profiles, and epigenetic signatures. In particular, chromatin opening is tightly coupled with gene transcription. To understand how these two processes are genetically regulated and associated with each other, we examined the changes of chromatin accessibility and gene expression in response to genetic variation by means of quantitative trait loci mapping. Regulatory patterns commonly observed in yeast and human across different technical platforms and experimental designs suggest a higher genetic complexity of transcription regulation in contrast to a more robust genetic architecture of chromatin regulation.

출생 전 스트레스에 의해 프로그램된 후생학적 반응 : $F_1$ 수컷 흰쥐 모델 (Epigenetic Responses Programmed by Prenatal Stress : $F_1$ Male Rat Model)

  • 이성호
    • 한국발생생물학회지:발생과생식
    • /
    • 제12권2호
    • /
    • pp.117-124
    • /
    • 2008
  • 지구상의 모든 생명체들은 자신의 생존과 종의 영속성을 보장하기 위해 우호적이지 않은 환경 변화에 대응하기 위한 효과적인 전략을 발전시켜왔다. 그 결과, 생명체들은 환경요인들의 변화에도 불구하고 체내 생리적 환경의 역동적인 평형, 즉 항상성(homeostasis)을 유지해 나간다. 스트레스는 항상성을 위협하는 정서적 그리고 물리적 반응이다. 스트레스는 일시적일 뿐만 아니라 거의 영구적인 영향을 개체에 줄 수 있는데, 특히 출생전 스트레스는 유전 코드의 변경없이 성체의 기능과 구조를 바꿀 수 있는 '후생학적 프로그래밍'을 할 수 있음이 최근의 연구들에 의해 알려졌다. 본 논문에서는 출생 전 스트레스를 받은 수컷 흰쥐에서 나타나는 생식과 연관된 일련의 사건들, 예를 들어 성적 이형현상을 보이는 뇌 지역의 변화, 신경전달물질 대사의 수정, 생식내분비 상태의 변화, 그리고 마지막으로 성행동의 이상들을 소개한다. 태아의 뇌는 출생전 프로그래밍에 극히 민감한데, 특히 글루코코티코이드는 강력한 뇌-프로그래밍 능력을 갖고 있다. 모체 스트레스에 의해 유도된 글루코코티코이드 입력에 의한 태아 뇌의 지속적인 과도 활성은 신경 가소성을 증가시키는 새로운 프로그램을 제공할 것이다. 그리고 증가한 신경 가소성은 환경 도전 속에서 개체가 더 잘 적응하도록 하는 증가된 표현형의 가소성에 대한 기초가 될 것이다. 결론적으로, '혹독한' 환경을 태아기에 경험한 개체는 미래에 자신의 생존 가능성을 높이기 위해 번식능력을 일부 포기하도록 후생학적으로 (재)프로그램하는 것으로 추정된다.

  • PDF

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Epigenetic Changes within the Promoter Regions of Antigen Processing Machinery Family Genes in Kazakh Primary Esophageal Squamous Cell Carcinoma

  • Sheyhidin, Ilyar;Hasim, Ayshamgul;Zheng, Feng;Ma, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10299-10306
    • /
    • 2015
  • The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher ($0.0517{\pm}0.0357$) in Kazakh esophageal cancer than in neighboring normal tissues ($0.0380{\pm}0.0214$, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.