• 제목/요약/키워드: epidermal growth factor receptor-tyrosine kinase inhibitor resistance

검색결과 11건 처리시간 0.025초

Mechanisms of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Resistance and Strategies to Overcome Resistance in Lung Adenocarcinoma

  • Chang, Yoon Soo;Choi, Chang-Min;Lee, Jae Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • 제79권4호
    • /
    • pp.248-256
    • /
    • 2016
  • Somatic mutations that lead to hyperactivation of epidermal growth factor receptor (EGFR) signaling are detected in approximately 50% of lung adenocarcinoma in people from the Far East population and tyrosine kinase inhibitors are now the standard first line treatment for advanced disease. They have led to a doubling of progression-free survival and an increase in overall survival by more than 2 years. However, emergence of resistant clones has become the primary cause for treatment failure, and has created a new challenge in the daily management of patients with EGFR mutations. Identification of mechanisms leading to inhibitor resistance has led to new therapeutic modalities, some of which have now been adapted for patients with unsuccessful tyrosine kinase inhibitor treatment. In this review, we describe mechanisms of tyrosine kinase inhibitor resistance and the available strategies to overcoming resistance.

Cancer cell-specific anticancer effects of Coptis chinensis on gefitinib-resistant lung cancer cells are mediated through the suppression of Mcl-1 and Bcl-2

  • JAE HWAN KIM;EUN SUN KO;DASOM KIM;SEONG-HEE PARK;EUN-JUNG KIM;JINKYUNG RHO;HYEMIN SEO;MIN JUNG KIM;WOONG MO YANG;IN JIN HA;MYUNG-JIN PARK;JI-YUN LEE
    • International Journal of Oncology
    • /
    • 제56권6호
    • /
    • pp.1540-1550
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), gefitinib, is an effective therapeutic drug used in the treatment of non-small cell lung cancers (NSCLCs) harboring EGFR mutations. However, acquired resistance significantly limits the efficacy of EGFR-TKIs and consequently, the current chemotherapeutic strategies for NSCLCs. It is, therefore, necessary to overcome this resistance. In the present study, the anticancer potential of natural extracts of Coptis chinensis (ECC) against gefitinib-resistant (GR) NSCLC cells were investigated in vitro and in vivo. ECC inhibited the viability, migration and invasion, and effectively induced the apoptosis of GR cells. These effects were associated with the suppression of EGFR/AKT signaling and the expression of anti-apoptotic proteins, Mcl-1 and Bcl-2, which were overexpressed in GR NSCLC cells. Combination treatment with ECC and gefitinib enhanced the sensitivity of GR cells to gefitinib in vitro, but not in vivo. However, ECC increased the survival of individual zebrafish without affecting the anticancer effect to cancer cells in vivo, which indicated a specific cytotoxic effect of ECC on cancer cells, but not on normal cells; this is an important property for the development of novel anticancer drugs. On the whole, the findings of the present study indicate the potential of ECC for use in the treatment of NSCLC, particularly in combination with EGFR-TKI therapy, in EGFR-TKI-resistant cancers.

Repeated Favorable Responses to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in a Case of Advanced Lung Adenocarcinoma

  • Kim, Eun-Young;Kim, Yoon-Hee;Ban, Hee-Jung;Oh, In-Jae;Kwon, Yong-Soo;Kim, Kyu-Sik;Kim, Yu-Il;Lim, Sung-Chul;Kim, Young-Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • 제74권3호
    • /
    • pp.129-133
    • /
    • 2013
  • The presence of epidermal growth factor receptor (EGFR ) mutation is a prognostic and predictive marker for EGFR-tyrosine kinase inhibitor (TKI) therapy. However, inevitably, relapse occurs due to the development of acquired resistance, such as T790M mutation. We report a case of repeated responses to EGFR-TKIs in a never-smoked woman with adenocarcinoma. After six cycles of gemcitabine and cisplatin, the patient was treated by gefitinib for 4 months until progression. Following the six cycles of third-line pemetrexed, gefitinib retreatment was initiated and continued with a partial response for 6 months. After progression, she was recruited for an irreversible EGFR inhibitor trial, and the time to progression was 11 months. Although EGFR direct sequencing on the initial diagnostic specimen revealed a wild-type, we performed a rebiopsy from the progressed subcarinal node at the end of the trial. The result of peptide nucleic acid clamping showed L858R/L861Q.

The GSK-$3{\beta}$/Cyclin D1 Pathway is Involved in the Resistance of Oral Cancer Cells to the EGFR Tyrosine Kinase Inhibitor ZD1839

  • Jeon, Nam Kyeong;Kim, Jin;Lee, Eun Ju
    • 대한의생명과학회지
    • /
    • 제20권2호
    • /
    • pp.85-95
    • /
    • 2014
  • Activation of the epidermal growth factor receptor (EGFR) and downstream signaling pathways have been implicated in causing resistance to EGFR-targeted therapy in solid tumors, including the head and neck tumors. To investigate the mechanism of antiproliferation to EGFR inhibition in oral cancer, we compared EGFR tyrosine kinase inhibitor (Gefitinib, Iressa, ZD1839) with respect to its inhibitory effects on three kinases situated downstream of EGFR: MAPK, Akt, and glycogen synthase kinase-$3{\beta}$ (GSK-$3{\beta}$). We have demonstrated that ZD1839 induces growth arrest and apotosis in oral cancer cell lines by independent of EGFR-mediated signaling. An exposure of oral cancer cells to ZD1839 resulted in a dose dependent up-regulation of the cyclin-dependent kinase inhibitor p21 and p27, down regulation of cyclin D1, inactivation of GSK-$3{\beta}$ and of active MAPK. In resistant cells, GSK-$3{\beta}$ is constitutively active and its activity is negatively regulated primarily through Ser 9 phosphorylation and further enhanced by Tyr216 phosphorylation. These results showed that the resistance to the antiproliferative effects of ZD1839, in vitro was associated with uncoupling between EGFR and MAPK inhibition, and that GSK-$3{\beta}$ activation and degradation of its target cyclin D1 were indicators of high cell sensitivity to ZD1839. In conclusion, our data show that the uncoupling of EGFR with mitogenic pathways can cause resistance to EGFR inhibition in oral cancer.

Neuroendocrine Differentiation in Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor

  • Chang, Youjin;Kim, Seon Ye;Choi, Yun Jung;So, Kwang Sup;Rho, Jin Kyung;Kim, Woo Sung;Lee, Jae Cheol;Chung, Jin-Haeng;Choi, Chang-Min
    • Tuberculosis and Respiratory Diseases
    • /
    • 제75권3호
    • /
    • pp.95-103
    • /
    • 2013
  • Background: Small cell lung cancer (SCLC) transformation during epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment in lung cancer has been suggested as one of possible resistance mechanisms. Methods: We evaluated whether SCLC transformation or neuroendocrine (NE) differentiation can be found in the cell line model. In addition, we also investigated its effect on responses to conventional chemotherapeutic drugs of the SCLC treatment. Results: Resistant cell lines to various kinds of EGFR-TKIs such as gefitinib, erlotinib, CL-387,785 and ZD6474 with A549, PC-9 and HCC827 lung adenocarcinoma cell lines were established. Among them, two resistant cell lines, A549/GR (resistant to gefitinib) and PC-9/ZDR (resistant to ZD6474) showed increased expressions of CD56 while increased synaptophysin, Rb, p16 and poly(ADP-ribose) polymerase were found only in A549/GR in western blotting, suggesting that NE differentiation occurred in A549/GR. A549/GR cells were more sensitive to etoposide and cisplatin, chemotherapeutic drugs for SCLC, compared to parental cells. Treatment with cAMP and IBMX induced synaptophysin and chromogranin A expression in A549 cells, which also made them more sensitive to etoposide and cisplatin than parental cells. Furthermore, we found a tissue sample from a patient which showed increased expressions of CD56 and synaptophysin after development of resistance to erlotinib. Conclusion: NE differentiation can occur during acquisition of resistance to EGFR-TKI, leading to increased chemosensitivity.

Deoxypodophyllotoxin Inhibits Cell Growth and Induces Apoptosis by Blocking EGFR and MET in Gefitinib-Resistant Non-Small Cell Lung Cancer

  • Kim, Han Sol;Oh, Ha-Na;Kwak, Ah-Won;Kim, Eunae;Lee, Mee-Hyun;Seo, Ji-Hye;Cho, Seung-Sik;Yoon, Goo;Chae, Jung-Il;Shim, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권4호
    • /
    • pp.559-569
    • /
    • 2021
  • As one of the major types of lung cancer, non-small cell lung cancer (NSCLC) accounts for the majority of cancer-related deaths worldwide. Treatments for NSCLC includes surgery, chemotherapy, and targeted therapy. Among the targeted therapies, resistance to inhibitors of the epidermal growth factor receptor (EGFR) is common and remains a problem to be solved. MET (hepatocyte growth factor receptor) amplification is one of the major causes of EGFR-tyrosine kinase inhibitor (TKI) resistance. Therefore, there exists a need to find new and more efficacious therapies. Deoxypodophyllotoxin (DPT) extracted from Anthriscus sylvestris roots exhibits various pharmacological activities including anti-inflammation and anti-cancer effects. In this study we sought to determine the anti-cancer effects of DPT on HCC827GR cells, which are resistant to gefitinib (EGFR-TKI) due to regulation of EGFR and MET and their related signaling pathways. To identify the direct binding of DPT to EGFR and MET, we performed pull-down, ATP-binding, and kinase assays. DPT exhibited competitive binding with ATP against the network kinases EGFR and MET and reduced their activities. Also, DPT suppressed the expression of p-EGFR and p-MET as well as their downstreat proteins p-ErbB3, p-AKT, and p-ERK. The treatment of HCC827GR cells with DPT induced high ROS generation that led to endoplasmic-reticulum stress. Accordingly, loss of mitochondrial membrane potential and apoptosis by multi-caspase activation were observed. In conclusion, these results demonstrate the apoptotic effects of DPT on HCC827GR cells and signify the potential of DPT to serve as an adjuvant anti-cancer drug by simultaneously inhibiting EGFR and MET.

Predictive Factors for Switched EGFR-TKI Retreatment in Patients with EGFR-Mutant Non-Small Cell Lung Cancer

  • Kwon, Byoung Soo;Park, Ji Hyun;Kim, Woo Sung;Song, Joon Seon;Choi, Chang-Min;Rho, Jin Kyung;Lee, Jae Cheol
    • Tuberculosis and Respiratory Diseases
    • /
    • 제80권2호
    • /
    • pp.187-193
    • /
    • 2017
  • Background: Third-generation tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR-TKIs) have proved efficacious in treating non-small cell lung cancer (NSCLC) patients with acquired resistance resulting from the T790M mutation. However, since almost 50% patients with the acquired resistance do not harbor the T790M mutation, retreatment with first- or second-generation EGFR-TKIs may be a more viable therapeutic option. Here, we identified positive response predictors to retreatment, in patients who switched to a different EGFR-TKI, following initial treatment failure. Methods: This study retrospectively reviewed the medical records of 42 NSCLC patients with EGFR mutations, whose cancers had progressed following initial treatment with gefitinib or erlotinib, and who had switched to a different first-generation EGFR-TKI during subsequent retreatment. To identify high response rate predictors in the changed EGFR-TKI retreatment, we analyzed the relationship between clinical and demographic parameters, and positive clinical outcomes, following retreatment with EGFR-TKI. Results: Overall, 30 (71.4%) patients received gefitinib and 12 (28.6%) patients received erlotinib as their first EGFR-TKI treatment. Following retreatment with a different EGFR-TKI, the overall response and disease control rates were 21.4% and 64.3%, respectively. There was no significant association between their overall responses. The median progression-free survival (PFS) after retreatment was 2.0 months. However, PFS was significantly longer in patients whose time to progression was ${\geq}10months$ following initial EGFR-TKI treatment, who had a mutation of exon 19, or whose treatment interval was <90 days. Conclusion: In patients with acquired resistance to initial EGFR-TKI therapy, switched EGFR-TKI retreatment may be a salvage therapy for individuals possessing positive retreatment response predictors.

Picropodophyllotoxin Inhibits Cell Growth and Induces Apoptosis in Gefitinib-Resistant Non-Small Lung Cancer Cells by Dual-Targeting EGFR and MET

  • Jin-Young, Lee;Bok Yun, Kang;Sang-Jin, Jung;Ah-Won, Kwak;Seung-On, Lee;Jin Woo, Park;Sang Hoon, Joo;Goo, Yoon;Mee-Hyun, Lee;Jung-Hyun, Shim
    • Biomolecules & Therapeutics
    • /
    • 제31권2호
    • /
    • pp.200-209
    • /
    • 2023
  • Patients with non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to the tyrosine kinase inhibitor gefitinib, however, the treatment becomes less effective over time by resistance mechanism including mesenchymal-epithelial transition (MET) overexpression. A therapeutic strategy targeting MET and EGFR may be a means to overcoming resistance to gefitinib. In the present study, we found that picropodophyllotoxin (PPT), derived from the roots of Podophyllum hexandrum, inhibited both EGFR and MET in NSCLC cells. The antitumor efficacy of PPT in gefitinib-resistant NSCLC cells (HCC827GR), was confirmed by suppression of cell proliferation and anchorage-independent colony growth. In the targeting of EGFR and MET, PPT bound with EGFR and MET, ex vivo, and blocked both kinases activity. The binding sites between PPT and EGFR or MET in the computational docking model were predicted at Gly772/Met769 and Arg1086/Tyr1230 of each ATP-binding pocket, respectively. PPT treatment of HCC827GR cells increased the number of annexin V-positive and subG1 cells. PPT also caused G2/M cell-cycle arrest together with related protein regulation. The inhibition of EGFR and MET by PPT treatment led to decreases in the phosphorylation of the downstream-proteins, AKT and ERK. In addition, PPT induced reactive oxygen species (ROS) production and GRP78, CHOP, DR5, and DR4 expression, mitochondrial dysfunction, and regulated involving signal-proteins. Taken together, PPT alleviated gefitinib-resistant NSCLC cell growth and induced apoptosis by reducing EGFR and MET activity. Therefore, our results suggest that PPT can be a promising therapeutic agent for gefitinib-resistant NSCLC.

Identifying Differentially Expressed Genes and Screening Small Molecule Drugs for Lapatinib-resistance of Breast Cancer by a Bioinformatics Strategy

  • Zhuo, Wen-Lei;Zhang, Liang;Xie, Qi-Chao;Zhu, Bo;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10847-10853
    • /
    • 2015
  • Background: Lapatinib, a dual tyrosine kinase inhibitor that interrupts the epidermal growth factor receptor (EGFR) and HER2/neu pathways, has been indicated to have significant efficacy in treating HER2-positive breast cancer. However, acquired drug resistance has become a very serious clinical problem that hampers the use of this agent. In this study, we aimed to screen small molecule drugs that might reverse lapatinib-resistance of breast cancer by exploring differentially expressed genes (DEGs) via a bioinformatics method. Materials and Methods: We downloaded the gene expression profile of BT474-J4 (acquired lapatinib-resistant) and BT474 (lapatinib-sensitive) cell lines from the Gene Expression Omnibus (GEO) database and selected differentially expressed genes (DEGs) using dChip software. Then, gene ontology and pathway enrichment analyses were performed with the DAVID database. Finally, a connectivity map was utilized for predicting potential chemicals that reverse lapatinib-resistance. Results: A total of 1, 657 DEGs were obtained. These DEGs were enriched in 10 pathways, including cell cycling, regulation of actin cytoskeleton and focal adhesion associate examples. In addition, several small molecules were screened as the potential therapeutic agents capable of overcoming lapatinib-resistance. Conclusions: The results of our analysis provided a novel strategy for investigating the mechanism of lapatinib-resistance and identifying potential small molecule drugs for breast cancer treatment.

H1975 세포에서 황금추출물에 의한 gefitinib 저항성 억제 효과 (Root Extract of Scutellaria Baicalensis Increases Gefitinib Sensitivity in H1975 Human Non-small Cell Lung Cancer Cells)

  • 박신형;박현지
    • 동의생리병리학회지
    • /
    • 제35권4호
    • /
    • pp.117-123
    • /
    • 2021
  • Gefitinib, a first generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), provides obvious clinical benefit in patients with EGFR-mutant non-small cell lung cancer (NSCLC). However, patients ultimately develop gefitinib resistance which mainly caused by EGFR T790M secondary mutation. In the current study, we investigated whether the root extract of Scutellaria baicalensis (SB) overcomes gefitinib resistance. Gefitinib-resistant H1975 human NSCLC cells (EGFR L858R/T790M double mutant) were treated with gefitinib and/or ethanol extract of SB (ESB) to evaluate the effect of ESB on the gefitinib sensitivity. The cell viability was measured by MTT assay and trypan blue exclusion assay. The colony-forming ability was evaluated by anchorage-dependent colony formation assay. Combined treatment with gefitinib and ESB markedly decreased the cell viability and colony formation than single treatment with gefitinib or ESB in H1975 cells. In addition, cells treated with both gefitinib and ESB exhibited a significant increase of sub-G1 DNA content which indicates apoptotic cells compared with those treated with gefitinib or ESB alone. As a molecular mechanism, combined treatment with gefitinib and ESB strongly downregulated the phosphorylation of ERK and JNK than single treatment with gefitinib or ESB. Taken together, our results demonstrate that ESB sensitizes H1975 cells to gefitinib treatment. We cautiously propose that ESB can be used in combination with gefitinib for the advanced NSCLC patients with acquired resistance to EGFR TKIs.