• Title/Summary/Keyword: enzyme stabilization

Search Result 72, Processing Time 0.032 seconds

Stabilization of Aspergillus sp. $\alpha$-Amylase by Modification with $IO_4$-oxidized Starch ($IO_4$-산화전분 변형에 의한 효소의 안정성 증가)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.265-270
    • /
    • 1999
  • The stabilization of Aspergillus sp. $\alpha$-amylase was attained by modification with periodate-oxidized sol-uble starch. The pH stability of modified enzyme was increased at pH 3~4 and 9~11 in the presence of $\alpha$-cyclodextrin($\alpha$-CD) compared with that of native enzyme. Thermal stability of the modified enzyme was increased. After treatment at 6$0^{\circ}C$ for 30min the activity remained 20% for the enzyme modified at pH 9.7 in the presence of $\alpha$-CD and tested in the presence of $\alpha$-CD 10% for the enzyme modified at pH 9.7 in the presence of $\alpha$-CD 0% for the native enzyme. The native enzyme and modified enzyme showed one peak in HPLC. The substrate specificity of the modified enzyme was not changed in HPLC analysis of reaction product.

  • PDF

Substrate Ground State Binding Energy Concentration Is Realized as Transition State Stabilization in Physiological Enzyme Catalysis

  • Britt, Billy Mark
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.533-537
    • /
    • 2004
  • Previously published kinetic data on the interactions of seventeen different enzymes with their physiological substrates are re-examined in order to understand the connection between ground state binding energy and transition state stabilization of the enzyme-catalyzed reactions. When the substrate ground state binding energies are normalized by the substrate molar volumes, binding of the substrate to the enzyme active site may be thought of as an energy concentration interaction; that is, binding of the substrate ground state brings in a certain concentration of energy. When kinetic data of the enzyme/substrate interactions are analyzed from this point of view, the following relationships are discovered: 1) smaller substrates possess more binding energy concentrations than do larger substrates with the effect dropping off exponentially, 2) larger enzymes (relative to substrate size) bind both the ground and transition states more tightly than smaller enzymes, and 3) high substrate ground state binding energy concentration is associated with greater reaction transition state stabilization. It is proposed that these observations are inconsistent with the conventional (Haldane) view of enzyme catalysis and are better reconciled with the shifting specificity model for enzyme catalysis.

Stabilization of .betha.-D-galactosidase from heat and chemical inactivation with the extract of panax ginseng C. A. Meyer

  • Kim, Doo-Ha;Hahn, Younghe;Hong, Soon-Keun
    • Archives of Pharmacal Research
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 1982
  • Staibilization effect of Panax ginseng C. A. Meyer on .betha.-D-Galactosidase inactivation was proved by kinetic studies of thermal inactivation of the enzyme. The water extract Panax ginseng C. A. Meyer showed stabilization activity at minimal concentration of 10ppm. The methanolic extract was purified to obtain ginseng saponins, and two groups of the ginsenosides, i. e. protopanaxadiol and protopanaxatriol were isolated. They also showed a protective effect against the thermal and chemical inactivation of the enzyme; p-chloromercuribenzoic acid and hydroxylamine known as protein modifier greatly inactivated the enzyme but inactivation was significantly balocked by the ginseng component MG$^{2+}$, known as a cofactor, stabilized the enzyme and the poor stabilization effect by it was potentiated by ginseng components.s.

  • PDF

Changes in Availability of Toxic Trace Elements (TTEs) and Its Effects on Soil Enzyme Activities with Amendment Addition

  • Lee, Sang-Hwan;Park, Misun;Kim, Min-Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.134-144
    • /
    • 2020
  • In-situ stabilization is a remediation method using amendments to reduce contaminant availability in contaminated soil. We tested the effects of two amendments (furnace slag and red mud) on the availability of toxic trace elements (TTEs) and soil enzyme activities (dehydrogenase, phosphatase, and urease). The application of amendments significantly decreased the availability of TTEs in soil (p < 0.05). The decreased availability of TTE content in soils was accompanied by increased soil enzyme activities. We found significant negative relationships between the TTE content assessed using Ca(NO3)2-, TCLP, and PBET extraction methods and soil enzyme activities (p < 0.01). Soil enzyme activities responded sensitively to changes in the soil environment (pH, EC, and availability of TTEs). It could be concluded that soil enzyme activities could be used as bioindicators or ecological indicators for soil quality and health in environmental soil monitoring owing to their high sensitivity to changes in soil.

Stabilization of Wheat $\beta$-Amylase by Modification with $IO_4$-Oxidized Starch ($IO_4$-산화전분 변형에 의한 밀 $\beta$-Amylase의 안정성 증가)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.348-352
    • /
    • 2000
  • The stabilization of wheat $\beta$-amylase( Himaltosin GL, Hankyu-Bio) was attained by modification wish periodate-oxidized soluble starch. The specific activities of modified enzyme at pH 9.7 and pH 8.0 were 17% and 96%, respectively, compared with that of native enzyme. The pH stability of modified enzyme was increased at pH 2~5 and 6~12 in the presence of $\alpha$-cyclodextrin( $\alpha$-CD) compared with that of native enzyme, and optimum pH of the enzyme was changed from pH 5.0 to pH 7.0 by the modification. Thermal stability of the modified enzyme was increased. After treatment at 6$0^{\circ}C$ for 10min, the activity remained 8% for the enzyme modified at pH 8.0 in the presence of $\alpha$-CD and tested in the presence of $\alpha$-CD, 5% for the native enzyme. The native enzyme and modified enzyme showed one peak in HPLC. The molecular weight of the modified enzyme was slightly increased in HPLC analysis.

  • PDF

Stabilization of Barley $\beta$-Amylase by Modification with $IO_4$-Oxidized Starch ($IO_4$-산화전분 변형에 의한 보리 $\beta$-Amylase의 안정성 증가)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.342-347
    • /
    • 2000
  • The stabilization of barley $\beta$-amylase(Biozyme ML, Amano) was attained by modification with periodate-oxidized soluble starch. The specific activities of modified enzyme at pH 9.7 and pH 8.0 were 42% and 92%, respectively, compared with that of native enzyme. The pH stability of modified enzyme was increased at pH 2~5 and 7~12 in the presence of $\alpha$-cyclodextrin( $\alpha$ -CD) compared wish that of native enzyme. Thermal stability of the modified enzyme was increased. After treatment at 6$0^{\circ}C$ for 10min. the activity remained 8% for the enzyme modified at pH 8.0 in the presence of $\alpha$-CD, 4.5% for the native enzyme. The native enzyme and modified enzyme showed two peak in HPLC. The molecular weight of the modified enzyme was slightly increased in HPLC analysis.

  • PDF

Effect of Enzyme Stabilization on Hardening of Clay-rock Brick (점토-골재 벽돌 경화에 있어 효소 사용의 효과)

  • Mitikie, Bahiru Bewket;Lee, Tai-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.366-374
    • /
    • 2017
  • This study investigates enzyme stabilization in clay-rock bricks through mechanical tests and image processing. Appropriate soil mixtures were designed using clay/crushed rock with ratios of 70/30, 60/40, 50/50, 40/60, and 30/70 by weight to verify the strength of the enzyme brick and soil compaction. The maximum compressive and flexural strengths in the 60/40 ratio mixture were found to be 5MPa and 1.25MPa, respectively; however, the maximum dry unit weight of $2.073g/cm^3$ was found in the 50/50 clay/gravel ratio mixture. Generally, the strength of the enzyme brick was improved by 27%. The paper concludes that in order to achieve optimal strength, soils should be mixed with the 60/40 clay/gravel ratio, which provides an adequate strength, while 50/50 ratio should be used for achieving more compaction. The SEM-EDX observation and Matlab image processing verified how the bond structure appeared after enzyme stabilization. It was found that enzymes created bond with the clay soil and the crushed rock for rendering strength and stability.

Thermal Stabilization of Aspergillus phytase by L-Arginine

  • Sunghoon Ryu;Park, Tae-Gwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.32-34
    • /
    • 1998
  • Phytase from Aspergillus species is a very heat unstable enzyme which inactivates to a great extent during the thermal processing of animal feed formulation. Various protein stabilization additives were tested to improve its heat stability. Among them, a basic amino acid, L-arginine remarkably increased the thermal stability of phytase in an aqueous solution state.

  • PDF

Stabilization of Enzyme in "Solvophobically" Controlled Polymer Microcapsules ("솔보포빅"한 고분자 마이크로 캡슐을 이용한 효소 안정화에 관한 연구)

  • Kim, Yong-Jin;Kim, Jin-Woong;Kim, Jin-Oh;Kim, Jin-Woo;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.1 s.55
    • /
    • pp.29-33
    • /
    • 2006
  • This article describes an enzyme stabilization method that allows the use of enzymes irrespective of environmental factors, especially heat, while maintaining their activity for a long time. We have designed enzyme microcapsules that consist of papain enzyme cores, poly(propylene glycol) interlayers, and poly(${\epsilon}-caprolactone$) walls. By confocal laser scanning microscopy measurements and the thermal stability of papain-loaded microcapsules, it is demonstrated that the papain is surrounded by a hydrophobic polyol layer and stabilized by the exclusive volume effect. In our study, improved thermal stability can be obtained by using more hydrophobic long-chained polyols, which is understood to be attributed to the effective formation of a hydrophobic polyol layer between the papain and the polymer wall by means of conformational anchoring in the interface.

Stabilization of a Raw-Starch-Digesting Amylase by Multipoint Covalent Attachment on Glutaraldehyde-Activated Amberlite Beads

  • Nwagu, Tochukwu N.;Okolo, Bartho N.;Aoyagi, Hideki
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.628-636
    • /
    • 2012
  • Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at $60^{\circ}C$, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at $40^{\circ}C$. The apparent $K_m$ of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.