• Title/Summary/Keyword: enzyme recycle

Search Result 21, Processing Time 0.025 seconds

Autohydrolysis and Enzymatic Saccharification of Lignocellulosic Materials(III) - Recycling and Reutilization of Cellulase Enzyme - (목질 재료의 자기가수분해 및 효소당화에 관한 연구 (Ⅲ) - Cellulase 효소의 회수 및 재사용 -)

  • Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.45-51
    • /
    • 1989
  • A major problem in the enzymatic hydrolysis of lignocellulosic substrates is the very strong bonding of cellulase to lignin and even cellulose in the hydrolysis residues. This phenomenon inhibits recycle of the cellulase which is a major expense of the enzymatic hydrolysis process. In this paper, autohydrolyzed wood was delignified by two-stage with a 0.3% Na OH extraction and oxygen-alkali bleaching and was subjected to enzymatic hydrolysis with cellulase. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method. the first recycling showed relatively high hydrolysis rate of 97.4%. Even at the third recycle. hydrolysis rate was 86.7 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted very high hydrolysis rate(97.0-97.7%). Even the third recycling showed about 94.2%. Authoydrolysis of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a substrate for enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels(III) - Quantitative Recycling of Cellulase Enzyme in the Enzymatic Hydrolysis of Steam-Exploded Woods - (대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究) (III) - 폭쇄(爆碎)처리재의 산소분해시(酸素分解時) Cellulase 산소(酸素)의 정량적(定量的) 회수(回收)에 관하여 -)

  • Cho, Nam-Seok;Lim, Chang-Suk;Lee, Jae-Sung;Park, Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 1991
  • Steam-exploded woods were delignified by two-stage with a 0.3% NaOH extraction and oxygen-alkali bleaching and were subjected to the enzymatic hydrolysis with cellulase enzyme. Also, an improved almost quantitative recycle process of cellulase enzyme was discussed. In enzyme recovery by affinity method, The first recycling showed relatively high hydrolysis rate of 96.4%. Even at the third recycle, hydrolysis rate was 87.0 percents. In the case of cellulase recovery by ultrafiltration method, first 2 recycling treatments resulted in very high hydrolysis rates, 96.8% and 95.0%, respectively. Even the third recycling showed about 93.6%. Steam-explosion treatment of oak wood followed by 2-stage delignification with alkali and oxygen-alkali produced a excellant substrate for the enzymatic hydrolysis that allowed almost quantitative recycle of cellulase.

  • PDF

Poly(L-Lactide)-Degrading Enzyme Production by Actinomadura keratinilytica T16-1 in 3 L Airlift Bioreactor and Its Degradation Ability for Biological Recycle

  • Sukkhum, Sukhumaporn;Tokuyama, Shinji;Kitpreechavanich, Vichien
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2012
  • The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at $46^{\circ}C$. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.

Development of Nanoenzymes for the Production of Glucose from Seaweed and Various Polysaccharide (해조류 및 다당류로부터 포도당 생산을 위한 나노효소 개발 및 특성)

  • Jin, Lie-Hua;Lee, Jung-Heon
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.453-458
    • /
    • 2010
  • The magnetically separable polyaniline nanofiber enzymes were developed for the recycle of enzyme and enhanced enzyme stability. The stability of enzyme was maintained over 90% for 8 days under room temperature and vigorous shaking conditions (200 rpm). The residual activity of immobilized enzyme was over 60% after 8 days incubation at $55^{\circ}C$. Glucose was produced from various polysaccharides, agarose, curdlan, cellulose, and sea weed, using magnetically separable immobilized enzyme. Glucose production rate with curdlan was 1.2 g/(l h) and showed high decomposition rate due to high mass transfer. After 10 times recycle, the residual activity of immobilized enzyme was over 75%. 1 g/L of glucose was produced with 5 mg of immobilized enzymes.

Empirical Evaluation of Cellulase on Enzymatic Hydrolysis of Waste Office Paper

  • Park, Enoch Y.;Ikeda, Yuko;Okuda, Naoyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.268-274
    • /
    • 2002
  • Enzymatic hydrolysis of waste office paper was evaluated using three commercial cellulases, Acremonium cellulase, Meicelase, and Cellulosin T2. Varying the enzyme loading from 1 to 10% (w/w) conversion of waste office paper to reducing sugar was investigated. The conversion increased with the increase in the enzyme loading: in the case of enzyme loading of 10% (w/w), Acremonium cellulase yielded 79%conversion of waste office paper, which was 17% higher compared to Meicelase, 13% higher than that of Cellulosin T2. Empirical model for the conversion (%) of waste office paper to re-ducing sugar (x) was derived from experimental results as follow, x = $kE^{m}t^{(aE+b)}$ where k, m, a, and b de-note empirical constants. E indicates initial enzyme concentration.

Cadaverine Production by Using Cross-Linked Enzyme Aggregate of Escherichia coli Lysine Decarboxylase

  • Park, Se Hyeon;Soetyono, Feilicia;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.289-296
    • /
    • 2017
  • Lysine decarboxylase (CadA) converts ${\small{L}}-lysine$ into cadaverine (1,5-pentanediamine), which is an important platform chemical with many industrial applications. Although there have been many efforts to produce cadaverine through the soluble CadA enzyme or Escherichia coli whole cells overexpressing the CadA enzyme, there have been few reports concerning the immobilization of the CadA enzyme. Here, we have prepared a cross-linked enzyme aggregate (CLEA) of E. coli CadA and performed bioconversion using $CadA^{CLEA}$. $CadA^{free}$ and $CadA^{CLEA}$ were characterized for their enzymatic properties. The optimum temperatures of $CadA^{free}$ and $CadA^{CLEA}$ were $60^{\circ}C$ and $55^{\circ}C$, respectively. The thermostability of $CadA^{CLEA}$ was significantly higher than that of $CadA^{free}$. The optimum pH of both enzymes was 6.0. $CadA^{free}$ could not be recovered after use, whereas $CadA^{CLEA}$ was rapidly recovered and the residual activity was 53% after the $10^{th}$ recycle. These results demonstrate that $CadA^{CLEA}$ can be used as a potential catalyst for efficient production of cadaverine.

Continuous Production of Cyclodextrin in Two-Stage Immobilized Enzyme Reactor Coupled with Ultrafiltration Recycle System (2단계 고정화 효소반응기를 활용한 Cyclodextrin의 연속생산)

  • Lee, Yong-Hyun;Lee, Sang-Ho;Han, Il-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 1991
  • The two-stage enzyme reactor, packed with cyclodextrin glucanotransferase (CGTase) immobilized on Amberite IRA 900, coupled with ultrafiltration membrane was investigated for continuous production of cyclodextrin (CD). 5% (w/v) of soluble starch was partially cyclized, in the 0.1 l first-stage immobilized enzyme reactor, up to CD conversion yield of 10% (w/w) at retention time of 0.56hr and 1.5 units of immobilized CGTase/1g of carrier. In the second stage main immobilized enzyme reactor capacity of 1.5 l, the maximum CD conversion yield of 39% (w/v) was achieved at retention time of 2.8hr and 0.47 unit of CGTase/1 g of carrier. Unreacted residual dextrin was fractionated with ultrafiltration membrane, and then, recycled into the second-stage main bioreactor to increase the CD conversion yield. The most suitable membrane size and the volume concentration ratio (concentrate: filterate) for recycling of unreacted residual dextrin were found to be 5K dalton and 4:6, respectively. CD conversion yield was increased about 3~4% upon co-immobilization of pulluanase along with CGTase. Spent Amberite IRA 900 can be reutilized consecutively more than 3 times for immobilization of CGTase after regeneration.

  • PDF

Immobilization of Lactase onto Various Polymer Nanofibers for Enzyme Stabilization and Recycling

  • Jin, Lihua;Li, Ye;Ren, Xiang-Hao;Lee, Jung-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1291-1298
    • /
    • 2015
  • Five different polymer nanofibers, namely, polyaniline nanofiber (PANI), magnetically separable polyaniline nanofiber (PAMP), magnetically separable DEAE cellulose fiber (DEAE), magnetically separable CM cellulose fiber (CM), and polystyrene nanofiber (PSNF), have been used for the immobilization of lactase (E.C. 3.2.1.23). Except for CM and PSNF, three polymers showed great properties. The catalytic activities (kcat) of the free, PANI, PAMP, and magnetic DEAE-cellulose were determined to be 4.0, 2.05, 0.59, and 0.042 mM/min·mg protein, respectively. The lactase immobilized on DEAE, PANI, and PAMP showed improved stability and recyclability. PANI- and PAMP-lactase showed only a 0-3% decrease in activity after 3 months of vigorous shaking conditions (200 rpm) and at room temperature (25℃). PANI-, PAMP-, and DEAE-lactase showed a high percentage of conversion (100%, 47%, and 12%) after a 1 h lactose hydrolysis reaction. The residual activities of PANI-, PAMP-, and DEAE-lactase after 10 times of recycling were 98%, 96%, and 97%, respectively.

Development of (α-Amylase Coated Magnetic Nanofiber for the Hydrolysis of Starch. ((α-Amylase가 고정화된 Magnetic Nanofiber를 이용한 전분 분해공정 개발)

  • Kim, Hyun;Lee, Jung-Heon
    • Journal of Life Science
    • /
    • v.17 no.9 s.89
    • /
    • pp.1260-1265
    • /
    • 2007
  • Magnetically separable enzyme-coated nanofibers were developed for the hydrolysis of starch. Stability of ${\alpha}-amylase-coated$ nanofiber was greatly improved and its residual activity was maintained over 92.7% after 32 days incubation at room temperature and under shaking conditions (200 rpm). The recovery of enzyme was high and enzyme activity after 10 recycle was 95.2% of its original activity. Developed enzyme-coated nanofibers were used for the hydrolysis of starch. When 0.5 mg of magnetically separable enzyme nanofibers was used, 40 g/l of starch (2 ml) was completely degraded within 40 min. The continuous enzyme reactor was developed and used for starch hydrolysis and 76% of starch (30 g/l) was hydrolyzed with 1 hr residence time.

Immobilization of GH78 α-L-Rhamnosidase from Thermotoga petrophilea with High-Temperature-Resistant Magnetic Particles Fe3O4-SiO2-NH2-Cellu-ZIF8 and Its Application in the Production of Prunin Form Naringin

  • Xu, Jin;Shi, Xuejia;Zhang, Xiaomeng;Wang, Zhenzhong;Xiao, Wei;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.419-428
    • /
    • 2021
  • To efficiently recycle GH78 thermostable rhamnosidase (TpeRha) and easily separate it from the reaction mixture and furtherly improve the enzyme properties, the magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8 (FSNcZ8) was prepared by modifying Fe3O4-NH2 with tetraethyl silicate (TEOS), microcrystalline cellulose and zinc nitrate hexahydrate. FSNcZ8 displayed better magnetic stability and higher-temperature stability than unmodified Fe3O4-NH2 (FN), and it was used to adsorb and immobilize TpeRha from Thermotoga petrophilea 13995. As for properties, FSNcZ8-TpeRha showed optimal reaction temperature and pH of 90℃ and 5.0, while its highest activity approached 714 U/g. In addition, FSNcZ8-TpeRha had better higher-temperature stability than FN. After incubation at 80℃ for 3 h, the residual enzyme activities of FSNcZ8-TpeRha, FN-TpeRha and free enzyme were 93.5%, 63.32%, and 62.77%, respectively. The organic solvent tolerance and the monosaccharides tolerance of FSNcZ8-TpeRha, compared with free TpeRha, were greatly improved. Using naringin (1 mmol/l) as the substrate, the optimal conversion conditions were as follows: FSNcZ8-TpeRha concentration was 6 U/ml; induction temperature was 80℃; the pH was 5.5; induction time was 30 min, and the yield of products was the same as free enzyme. After repeating the reaction 10 times, the conversion of naringin remained above 80%, showing great improvement of the catalytic efficiency and repeated utilization of the immobilized α-L-rhamnosidase.