• Title/Summary/Keyword: enzyme kinetics

검색결과 223건 처리시간 0.035초

Simple Assay Method for Determination of Capsaicinoid Synthetase Activity

  • Kim, Kye-Won;Varindra, R.;Kim, Donghern;Hwang, Seon-Kap;Kim, Jong-Guk;Lee, Shin-Woo
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.230-234
    • /
    • 2000
  • A new method to assay the capsaicinoid synthetase (CS) activity was developed by utilizing NADHcoupled enzyme systems involving pyruvate kinase and lactate dehydrogenase. CS activities in Capsicum placenta, depending upon the kinetics of the NADH oxidation, revealed almost the same profile as compared with those shown using an HPLC-based method. When the substrates, 8-methyl nonanoic acid and vanillylamine, for the CS enzyme were employed separately or simultaneously, it appeared that the two-step reaction, acyl-CoA formation and condensation with vanillyla~ne, of the CS enzyme was a coupled reaction. Thus, this assay method of the CS enzyme can be considered as an alternative to the HPLC-based method, since it has the advantages of rapidity and simplicity as well as reliability when compared with the existing method.

  • PDF

Thermal Inactivation of Myrosinase from White Mustard Seeds

  • Ko, Young Hwan;Lee, Ran
    • The Korean Journal of Food And Nutrition
    • /
    • 제34권1호
    • /
    • pp.26-35
    • /
    • 2021
  • Myrosinases (thioglucosidases) catalyze the hydrolysis of a class of compounds called glucosinolates, of which the aglycones show various biological functions. It is often necessary to minimize the loss of myrosinase activity during thermal processing of cruciferous vegetables. Myrosinase was isolated from a popular spice, white mustard (Sinapis alba), and its thermal inactivation kinetics was investigated. The enzyme was extracted from white mustard seeds and purified by a sequential processes of ammonium sulfate fractionation, Concanavalin A-Sepharose column chromatography, and gel permeation chromatography. At least three isozymes were revealed by Concanavalin A-Sepharose column chromatography. The purity of the major myrosinase was examined by native polyacrylamide gel electrophoresis and on-gel activity staining with methyl red. The molecular weight of the major enzyme was estimated to be 171 kDa. When the consecutive step model was used for the thermal inactivation of the major myrosinase, its inactivation energy was 44.388 kJ/mol for the early stage of destruction and 32.019 kJ/mol for the late stage of destruction. When the distinct two enzymes model was used, the inactivation energy was 77.772 kJ/mol for the labile enzyme and 95.145 kJ/mol for the stable enzyme. The thermal inactivation energies lie within energy range causing nutrient destruction on heating.

Purification and Characterization of Glycerate Kinase From the Thermoacidophilic Archaeon Thermoplasma acidophilum: An Enzyme Belonging to the Second Glycerate Kinase Family

  • Noh, Mi-Young;Jung, Jin-Hwa;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권4호
    • /
    • pp.344-350
    • /
    • 2006
  • Thermoplasma acidophilum is a thermoacidophilic archaeon that grows optimally at $59^{\circ}C$ and pH 2. Along with another thermoacidophilic archaeon, Sulfolobus solfataricus, it is known to metabolize glucose by the non-phosphorylated Entner-Doudoroff (nED) pathway. In the course of these studies, the specific activities of glyceraldehyde dehydrogenase and glycerate kinase, two enzymes that are involved in the downstream part of the nED pathway, were found to be much higher in T. acidophilum than in S. solfataricus. To characterize glycerate kinase, the enzyme was purified to homogeneity from T. acidophilum cell extracts. The N-terminal sequence of the purified enzyme was in exact agreement with that of Ta0453m in the genome database, with the removal of the initiator methionine. Furthermore, the enzyme was a monomer with a molecular weight of 49kDa and followed Michaelis-Menten kinetics with $K_m$ values of 0.56 and 0.32mM for DL-glycerate and ATP, respectively. The enzyme also exhibited excellent thermal stability at $70^{\circ}C$. Of the seven sugars and four phosphate donors tested, only DL-glycerate and ATP were utilized by glycerate kinase as substrates. In addition, a coupled enzyme assay indicated that 2-phosphoglycerate was produced as a product. When divalent metal ions, such as $Mn^{2+},\;CO^{2+},\;Ni^{2+},\;Zn^{2+},\;Ca^{2+},\;and\;Sr^{2+}$, were substituted for $Mg^{2+}$ the enzyme activities were less than 10% of that obtained in the presence of $Mg^{2+}$. The amino acid sequence of T. acidophilum glycerate kinase showed no similarity with E. coli glycerate kinases, which belong to the first glycerate kinase family. This is the first report on the biochemical characterization of an enzyme which belongs to a member of the second glycerate kinase family.

Properties of Acetyl-CoA Synthetase from Pseudomonas fluorescens

  • Kim, Yu-Sam;An, Jae-Hyung;Yang, Bu-Hyun;Kim, Kyu-Wan
    • BMB Reports
    • /
    • 제29권4호
    • /
    • pp.277-285
    • /
    • 1996
  • In Pseudomonas fluorescens grown on malonate as sole carbon source, acetyl-CoA synthetase was induced, suggesting that malonate is metabolized through acetate and then acetyl-CoA. Acetyl-CoA synthetase was purified 18.6-fold in 4 steps to apparent homogeneity. The native molecular mass of the enzyme estimated by a native acrylamide gel electrophoresis was 130 kDa. The enzyme was composed of two identical subunits with a molecular mass of 67 kDa. Optimum pH was 70. The acetyl-CoA synthetase showed typical Michaelis-Menten kinetics for the substrates, acetate, ATP and CoA, whose $K_m$ values were calculated to be 33.4, 74.8, and 40.7 mM respectively. Propionate. butyrate and pentanoate were also used as substrates by the enzyme, but the rate of the formation of the CoA derivatives was decreased in the order of the increase in carbon number. The enzyme was inhibited by the group-specific reagents diethylpyro-carbonate, 2,3-butanedione, pyridoxal-5'-phosphate and N-bromosuccinimide. In the presence of substrates the inactivation rate of the enzyme, by all of the group-specific reagents mentioned above decreased, indicating the presence of catalytically essential histidine, arginine, lysine and tryptophan residues at or near the active site. Preincubation of the enzyme with ATP, $Mg^{2+}$ resulted in the increase of its susceptibility to diethylpyrocarbonate, suggesting that ATP, $Mg^{2+}$ may induce a conformational change in the active site exposing the essential histidine residue to diethylpyrocarbonate. The enzyme was acetylated in the presence of acetyl-CoA, indicating that this is one of acyl-enzyme.

  • PDF

Purification and Characteristics of Endo-Polygalacturonase from Korean Tomato (한국산 토마토의 Endo-Polygalacturonase 정제 및 성질)

  • Choi, Cheong;Cho, Young-Je;Son, Gyu-Mok
    • Applied Biological Chemistry
    • /
    • 제33권1호
    • /
    • pp.73-78
    • /
    • 1990
  • Endo-polygalacturonase was purified from tomato, Lycopersicon esculentum L. The purification procedures included gel filtration on Sephadex G-150 and DEAE-cellulose ion exchange chromatography. Yield of the enzyme purification was 12.74 %. Purified enzyme was confirmed as a active single band by the SDS-polyacrylamide gel electrophoresis. When the purified enzyme was applied to SDS-PAGE, the molecular weight was estimated about 50,000. The optimum pH for the enzyme activity was 5.0 and the range of its stability to the pH was 4.0 to 5.0. The optimum temperature was $50^{\circ}C$, while the enzyme was abruptly inactivated above $50^{\circ}C$. From the result of the study on the effects of metals ion, it was found that $Ag^+$, $Zn^{++}$ and $Mg^{++}$ increased on the enzyme activity. In contrast, $Ba^{++}$, $Hg^{++}$, $Pb^{++}$, $Ca^{++}$, $Mn{++}$, $Cu^{++}$, $Fe^{+++}$, $Na^+$ and $K^+$ decreased it. the reaction catalyzed by this enzyme followed typical Michaelis-Menten kinetics with the Km value of $1.43{\times}10^{-1}\;mol/l$.

  • PDF

Characteristics of a Novel Acinetobacter sp. and Its Kinetics in Hexavalent Chromium Bioreduction

  • M., Narayani;K., Vidya Shetty
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.690-698
    • /
    • 2012
  • Cr-B2, a Gram-negative hexavalent chromium [Cr(VI)] reducing bacteria, was isolated from the aerator water of an activated sludge process in the wastewater treatment facility of a dye and pigment based chemical industry. Cr-B2 exhibited a resistance for 1,100 mg/l Cr(VI) and, similarly, resistance against other heavy metal ions such as $Ni^{2+}$ (800 mg/l), $Cu^{2+}$ (600 mg/l), $Pb^{2+}$ (1,100 mg/l), $Cd^{2+}$ (350 mg/l), $ZN^{2+}$ (700 mg/l), and $Fe^{3+}$ (1,000 mg/l), and against selected antibiotics. Cr-B2 was observed to efficiently reduce 200 mg/l Cr(VI) completely in both nutrient and LB media, and could convert Cr(VI) to Cr(III) aerobically. Cr(VI) reduction kinetics followed allosteric enzyme kinetics. The $K_m$ values were found to be 43.11 mg/l for nutrient media and 38.05 mg/l for LB media. $V_{max}$ values of 13.17 mg/l/h and 12.53 mg/l/h were obtained for nutrient media and LB media, respectively, and the cooperativity coefficients (n) were found to be 8.47 and 3.49, respectively, indicating positive cooperativity in both cases. SEM analysis showed the formation of wrinkles and depressions in the cells when exposed to 800 mg/l Cr(VI) concentration. The organism was seen to exhibit pleomorphic behavior. Cr-B2 was identified on the basis of morphological, biochemical, and partial 16S rRNA gene sequencing chracterizations and found to be Acinetobacter sp.

Kinetics of Horseradish Peroxidase-Catalyzed Nitration of Phenol in a Biphasic System

  • Kong, Mingming;Zhang, Yang;Li, Qida;Dong, Runan;Gao, Haijun
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.297-305
    • /
    • 2017
  • The use of peroxidase in the nitration of phenols is gaining interest as compared with traditional chemical reactions. We investigated the kinetic characteristics of phenol nitration catalyzed by horseradish peroxidase (HRP) in an aqueous-organic biphasic system using n-butanol as the organic solvent and ${NO_2}^-$ and $H_2O_2$ as substrates. The reaction rate was mainly controlled by the reaction kinetics in the aqueous phase when appropriate agitation was used to enhance mass transfer in the biphasic system. The initial velocity of the reaction increased with increasing HRP concentration. Additionally, an increase in the substrate concentrations of phenol (0-2 mM in organic phase) or $H_2O_2$ (0-0.1 mM in aqueous phase) enhanced the nitration efficiency catalyzed by HRP. In contrast, high concentrations of organic solvent decreased the kinetic parameter $V_{max}/K_m$. No inhibition of enzyme activity was observed when the concentrations of phenol and $H_2O_2$ were at or below 10 mM and 0.1 mM, respectively. On the basis of the peroxidase catalytic mechanism, a double-substrate ping-pong kinetic model was established. The kinetic parameters were ${K_m}^{H_2O_2}=1.09mM$, ${K_m}^{PhOH}=9.45mM$, and $V_{max}=0.196mM/min$. The proposed model was well fit to the data obtained from additional independent experiments under the suggested optimal synthesis conditions. The kinetic model developed in this paper lays a foundation for further comprehensive study of enzymatic nitration kinetics.

Enzyme-Linked, Biotin-Streptavidin Bacterial-Adhesion Assay for Helicobacter pylori Lectin-Like Interactions with Cultured Cells

  • Murillo, Guzman;Antonia, Maria;Ascencio, Felipe
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권1호
    • /
    • pp.35-39
    • /
    • 2001
  • A simple method for studying the lectin-like interactions between Helicobacter pylori and cultured human epithelial cell lines was developed using an enzyme-linked, biotin-streptavidin bacterial-adhesion assay. The present study suggests that this method is suitable for evaluating the participation of lectin interactions in the adhesion of H. pylori to cultured HeLa S3 and Kato III cells, both fixed and glycosidase-treated cells, as well as assessing glycoconjugated binding inhibition studies. The time-course and dose-dependent kinetics of the biotin-labeled H. pylori adhesion th the formaldehyde-fixed Hela S3 and Kato III cell lines exhibited saturation. In addition, the binding of the biotin-labeled H. pylori to the formaldehyde-fixed cultured cells was partially blocked by pre-incubation with glycoconjugates and polyclonal antibodies against a heparan sulfate binding protein from H. pylori.

  • PDF

Purification and Characterization of a New κ-Carrageenase from the Marine Bacterium Vibrio sp. NJ-2

  • Zhu, Benwei;Ning, Limin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권2호
    • /
    • pp.255-262
    • /
    • 2016
  • The carrageenan-degrading marine bacterium Vibrio sp. strain NJ-2 was isolated from rotten red algae, and κ-carrageenase with high activity was purified from the culture supernatant. The purified enzyme with molecular mass of 33 kDa showed the maximal activity of 937 U/mg at 40℃ and pH 8.0. It maintained 80% of total activity below 40℃ and between pH 6.0 and 10.0. The kinetics experiment showed the Km and Vmax values were 2.54 g/ml and 138.89 mmol/min/mg, respectively. The thin layer chromatography and ESI-MS analysis of hydrolysates indicated that the enzyme can endolytically depolymerize the κ-carrageenan into oligosaccharides with degrees of depolymerization of 2-8. Owing to its high activity, it could be a valuable tool to produce κ-carrageenan oligosaccharides with various biological activities.

Enzyme-Catalyzed Transesterification Processes in Organic Solvents (미생물 계면활성제에 관한 연구(제3보);유기용매에서 효소를 촉매로 한 에스테르교환반응)

  • Kim, Sang-Chun;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • 제9권1호
    • /
    • pp.7-13
    • /
    • 1992
  • Lipases catalyzed the transesterification reaction between esters and various primary and secondary alcohols in a 99% organic medium, porcine pancreatic, yeast, mold lipases can vigorously act as catalysts in a number of nearly anhydrous organic solvents. Various transesterification reactions catalyzed by porcine pancreatic lipase in hexane obey Michaelis-Menten kinetics. The dependence of the catalytic activity of the enzyme in organic media on the pH of the aqueous solution from which it was recovered is bell-shaped, with the maximum coinciding with the pH optimum of the enzymatic activity in water. The catalytic power exhibited by the lipases in organic solvents is comparable to that displayed in water. In addition to transesterification, lipases Can catalyze several other processes in organic media.