• Title/Summary/Keyword: enzyme inhibitors

검색결과 511건 처리시간 0.035초

Inhibition of the Biodegradative Threonine Dehydratase from Serratia marcescens by ${\alpha}$-Keto Acids and Their Derivatives

  • Choi, Byung-Bum;Kim, Soung-Soo
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.118-123
    • /
    • 1995
  • Biodegradative threonine dehydratase was purified to homogeneity from Serratia marcescens ATCC 25419 by streptomycin sulfate treatment, Sephadex G-200 gel filtration chromatography followed by AMP-Sepharose 4B affinity chromatography. The molecular weight of the purified enzyme was 118,000 by fast protein liquid chromatography using superose 6-HR. The enzyme was determined to be a homotetrameric protein with subunit molecular weights of 30,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was inhibited by ${\alpha}-Keto$ acids and their derivatives such as ${\alpha}-ketobutyrate$, pyruvate, glyoxlyate, and phosphoenol pyruvate, but not by ${\alpha}-aminobutyrate$ and ${\alpha}-hydroxybutyrate$. The inhibition of the enzyme by pyruvate and glyoxylate was observed in the presence of AMP. The inhibitory effect of glyoxylate was decreased at high enzyme concentration, whereas the inhibition by pyruvate was independent of the enzyme concentration. The kinetics of inhibition of the enzyme by pyruvate and glyoxylate revealed a noncompetitive and mixed-type inhibition by the two inhibitors with respect to L-threonine and AMP, respectively.

  • PDF

Purification and Characterization of Endo-$\beta$-1,4 Mannanase from Aspergillus niger gr for Application in Food Processing Industry

  • Naganagouda, K.;Salimath, P.V.;Mulimani, V.H.
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1184-1190
    • /
    • 2009
  • A thermostable extracellular $\beta$-mannanase from the culture supernatant of a fungus Aspergillus niger gr was purified to homogeneity. SDS-PAGE of the purified enzyme showed a single protein band of molecular mass 66 kDa. The $\beta$-mannanase exhibited optimum catalytic activity at pH 5.5 and $55^{\circ}C$. It was thermostable at $55^{\circ}C$, and retained 50% activity after 6 h at $55^{\circ}C$. The enzyme was stable at a pH range of 3.0 to 7.0. The metal ions $Hg^{2+}$, $Cu^{2+}$, and $Ag^{2+}$ inhibited complete enzyme activity. The inhibitors tested, EDTA, PMSF, and 1,10-phenanthroline, did not inhibit the enzyme activity. N-Bromosuccinimide completely inhibited enzyme activity. The relative substrate specificity of enzyme towards the various mannans is in the order of locust bean gum>guar gum>copra mannan, with $K_m$ of 0.11, 0.28, and 0.33 mg/ml, respectively. Since the enzyme is active over a wide range of pH and temperature, it could find potential use in the food-processing industry.

Purification and Characterization of a Serine Proteinase from Acanthamoeba culbertsoni

  • Park, Ki-Won;Song, Chul-Yong
    • BMB Reports
    • /
    • 제29권5호
    • /
    • pp.455-461
    • /
    • 1996
  • A serine proteinase was purified from Acanthamoeba culbertsoni by 41~80% ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography and gel filtration chromatography. The molecular weight of the purified enzyme was estimated to be 108.0 kDa by gel filtration chromatography and 54.0 kDa by SDS-PAGE. Therefore, the purified enzyme seemed to be a dimer. Isoelectric point was 4.5. The enzyme activity was highly inhibited by the serine proteinase inhibitors diisopropyl fluorophosphate (OFP) and phenylmethyl sulfonylfluoride (PMSF). It had a narrow pH optimum of 6.5~7.5 with a maximum at pH 7.0. These data suggested that the purified enzyme was a neutral serine proteinase. Optimal temperature was $37^{\circ}C$. It was stable for at least 16 h at $4^{\circ}C$ and $37^{\circ}C$, but it was rapidly inactivated at $65^{\circ}C$ The activity of the purified enzyme was not influenced significantly by $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$ or $Ca^{2+}$. However, the enzyme activity was highly inhibited by $Hg^{2+}$ The enzyme degraded type I collagen and fibronectin, but not BSA, hemoglobin, lysozyme, immunoglobulin A or immunoglobulin G.

  • PDF

Purification and Characterization of Pyrimidine Nucleotide N-Ribosidase from Pseudomonas oleovorans

  • YU, Tae-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.573-578
    • /
    • 2005
  • Pyrimidine nucleotide N-ribosidase (pyrimidine 5'-nucleotide phosphoribo(deoxyribo)hydrolase/pyrimidine 5'-nucleotide nucleosidase, EC 3.2.2.10) catalyzes the breakdown of pyrimidine 5'-nucleotide into pyrimidine base and ribose(deoxyribo)-5-phosphate. However, detailed characteristics of the enzyme have not yet been reported. The enzyme was purified to homogeneity 327.9-fold with an overall yield of $6.1\%$ from Pseudomonas oleovorans ATCC 8062. The enzyme catalyzed cytidine monophosphate (CMP) and uridine monophosphate (UMP), but not adenosine monophosphate (AMP) and guanosine monophosphate (GMP). The enzyme optimally metabolized CMP at pH 6.0 and UMP at around 8.5, and the optimum temperature for the overall enzyme reaction was found to be $37^{\circ}C$. The $K_m$ values of the enzyme for CMP (at pH 6.0) and UMP (at pH 8.5) were 1.6 mM and 1.1 mM, respectively. AMP, deoxyCMP, and deoxyUMP were very effective inhibitors of the reaction. Double-reciprocal plots obtained in the absence and in the presence of AMP revealed that this inhibitory effect was of the mixed competitive type with respect to the breakdown of CMP and of the noncompetitive type with respect to the breakdown of UMP. In the presence of AMP, the enzyme followed sigmoid kinetics with respect to each substrate.

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

저해제가 Vibrio parahzemolyticius 균주의 생육 및 요소분해효소의 활성에 미치는 영향 (Effect of Inhibitors on cell growth and urease activity of Vibrio parahaemolyticus)

  • 김종숙;김영희
    • 생명과학회지
    • /
    • 제10권6호
    • /
    • pp.558-563
    • /
    • 2000
  • Effect of inhibitors on Vibrio parahaemolyticus cell growth and its urease activity was studied. The growth of the bacterium and the enzyme activity were inhibited by the addition of 0.02% p-hydroxymercuric benzoate, $HgCl_2$and $AgNO_3$. However, same concentration of boric acid, thallium acetate and $Pb(NO_3)_2$ did not affect the cell growth but inhibited urease activity by 25%, 29%, and 38%, respectively. Acetohydroxamic acid was the most potent inhibitor on cell growth by inhibiting 40% but did not affect urease activity. To investigate the effect of inhibitors on urease activity, urease was purified and confirmed on SDS-PAGE. The purified urease was inhibited 100% by the addition of 1 mM acetohydroxamic acid and $AgNO_3$but no inhibition was occurred by the addition of the same concentration of thallium acetate. and the addition of 0.01 mM of $HgCl_2$ and acetohydroxamic acid inhibited the purified urease activity by 39% and 24%, respectively. On 0.1 millimolar basic, acetohydroxamic acid and $HgCl_2$inhibited 4 times more active in urease inhibition than p-hydroxymercuric benzoate whereas no inhibition was occurred either thallium acetate or $Pb(NO_3)_2$.

  • PDF

Sulfhydryl기와 세포막 구성성분의 대사 변화에 따른 다형핵 백혈구 기능의 변경 (Alteration of PMN Leukocyte Function by the Change of Sulfhydryl Group and Metabolism of Membrane Components)

  • 신재훈;이정수;한은숙;신용규;이광수
    • 대한약리학회지
    • /
    • 제25권1호
    • /
    • pp.75-85
    • /
    • 1989
  • 면역 보체가 결합되어 있는 zymosan에 의하여 활성화된 다형핵 백혈구에서 세포 투과성 물질인 N-ethylmaleiamide과 $Hg^{++}$은 superoxide 라디칼 생성, NADPH oxidase 활성도 및 lysosomal enzyme (lactic dehydrogenase, ${\beta}-glucuronidase$)의 유리를 억제하였다. 세포막 단백에 특이적인 p-chloromercuribenzoic acid와 p-chloromercuribenzenesulfonic acid는 superoxide 라디칼 생성에 영향을 주지 않았으나 NADPH oxidase 활성도와 lysosomal enzyme의 유리를 억제하였다. 식작용 중에 세포막과 세포내의 sulfhydryl기는 반응시간에 따라 점진적으로 감소하였다. N-ethylmaleiamide와 $Hg^{++}$은 세포막과 세포내의 sulfhydryl기를 모두 감소시켰다. P-Chloromercuribenzoic acid와 p-chloromercuribenzenesulfonic acid는 세포막의 sulfhydryl기를 유의하게 감소시켰으나 세포내 용해성 sulfhydryl기에는 영향을 주지않았다. Cysteine과 mercaptopropionylglycine는 superoxide 라디칼의 생성과 lysosomal enzyme의 유리를 억제하였다. Gluthathione은 superoxide생성에 영향을 주지 않았으나 뚜렷하게 lactic dehydrogenase의 유리를 억제하였다. N-ethylmaleiamide에 의한 superoxide 생성의 억제는 cysteine과 mercaptopropionyl-glycine에 의하여 반전되었으나 gluthathione의 영향은 없었다. N-ethylamleiamide에 의한 NADPH oxidase의 비활성화는 gluthathione, cysteine과 mercaptopropionylglycine에 의하여 저해되었다. Carbachol에 의하여 항진된 superoxide 라디칼 생성은 N-ethylamleiamide에 의하여 완전히 억제되었고, atropine에 의하여 길항되었다. 그러므로, 외부 자극에 대한 다형핵 백혈구 반응의 표현은 sulfhydryl기의 양의 변화와 연관이 있을 것으로 시사되었다. Lysosomal enzyme 유리는 세포막과 세포내의 sulfhydryl기에 의하여, 이에 반하여 superoxide생성은 세포내 sulfhydryl기에 의해서 영향받을 것으로 추정되었다.

  • PDF

식물 특정효소저해제의 생물활성 조사에 의한 신규제초제 작용점 탐색 (Searching of Possible Target Enzymes for Herbicide Development using Commercial Plant-Specific Inhibitors)

  • 황인택;최정섭;박상희;이관휘;이병회;홍경식;조광연
    • 농약과학회지
    • /
    • 제5권1호
    • /
    • pp.36-45
    • /
    • 2001
  • 본 연구는 새로운 제초제 후보물질을 탐색하기 위하여 식물특이적 효소 저해제로 알려진 107개 기존 화합물에 대하여 생물활성을 조사하였다. Germination test, seedling assay, wheat leaf disc assay, cyanobacteria assay, whole plant assay를 통하여 15종의 저해제를 선발하였고 이들은 34종 효소를 저해하는 것으로 확인되었다. 이들 화합물 중에서 phenylhydrazine, purine, o-phenanthroline, oleylamine, 7,8-benzoquinoline, aminooxyacetic acid, dicyclohexylcarbodiimide 등은 성체를 이용한 온실 실험에서 높은 제초활성을 나타내었다. 7,8-benzoquinone, 8-hydroxyquinoline, 2,2'-dipyridyl 및 o-phenanthroline 등은 피, 벼, 토마토의 발아를 $1.25{\sim}5{\mu}M$의 농도에서도 억제하였다. 7,8-benzoquinoline, cyanuric fluoride, 4-methylpyrazole, tranylcypromine, oleylamine과 trifluoperazine 등은 $30{\sim}100{\mu}M$ 농도에서 cyanobacteria의 생육을 저해하였다. Dicyclohexyl carbodiimide와 chlorpromazine은 $100{\mu}M$ 농도에서 wheat leaf disc의 백화현상을 유기시켰다. 이상과 같이 생물학적 활성을 갖는 식물 특이적 효소저해제들은 신규제초제 후보물질을 선발하기 위한 새로운 대상효소로 이용될 수 있을 것으로 생각된다.

  • PDF