• Title/Summary/Keyword: enzymatically treated

Search Result 36, Processing Time 0.025 seconds

Physicochemical and sensory characteristics of enzymatically treated and texture modified elderly foods (물성조절 고령친화식품의 이화학 및 감각특성 분석 - 효소 처리 및 재구성 식품 중심으로 -)

  • Boo, Kang-Won;Kim, Bum-Geun;Lee, Seung-Joo
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.495-502
    • /
    • 2020
  • In this study, the physicochemical and sensory characteristics of such as enzymatically treated and texture modified elderly foods made with beef, squid, eel, and mackerel were investigated. The enzymatically treated squid sample showed the proper texture hardness level corresponding to Universal Design Food (UDF) level 1 and all other elderly foods showed hardness consistent with UDF Level 2. The moisture contents were higher than 70% in the enzymatically treated boiled down squid and the two texture modified samples made with eel and mackerel, respectively. The enzymatically treated beef and squid samples contained 25.26 and 21.73% of crude protein, respectively. One serving portion of these enzymatically treated samples provided over 50% of daily needed protein intake of 65 years and older. According to the sensory evaluation of the samples, elderly recognized the differences between all enzyme treatment samples and controls in terms of hardness and chewiness, which are the main factors of the elderly food. In addition, the easier swallowness of texture modified foods were perceived. The positive assessment of elderly on the enzymatically treated samples using beef and squid were confirmed by preference tests.

Modification of Functional Properties of Casein by Kiwifruit Protesse (키위 단백질 분해효소가 카제인의 기능성에 미치는 영향)

  • Yoon, Sun;Choi, Hye-jung;Lee, Jin-sil
    • Korean journal of food and cookery science
    • /
    • v.7 no.4
    • /
    • pp.93-101
    • /
    • 1991
  • The object of this study was to investigate characteristics of kiwifruit protesae and effect of this enzyme on the functionality of casein. The specific activity of crudely prepared kiwifruit pretense on casein was 196.95 units/mg protein, it showed optimum activity at pH 3.0, $60^{\circ}C$. The degree of hydrolysis of casein with pretense treatment steeply increased to 73.5% and 78.9% for 10 and 20 minutes and then reached 84.1% and 89.3% for 1 and 4 hours, respectively. Solubility of non heated control group was 0.2% at pH 4, while the sample groups treated with enzyme for 0, 10 and 20 minutes were 14.5%, 19.2% and 24.0%, respectively. Casein treated with pretense showed marked increase in foam expansion near isoelectric point. However, enzymatically treated groups had lower foam expansion than the control groups. Foam stabilities of enzymatically modified group were lower than those of the control groups at all pH. Emulsifying activity of the non-heated control group was 0% at pH 4, while the groups modified enzymatically for 0, 10, and 60 minutes showed 51.0%, 55.5% and 54.5%, respectively.

  • PDF

Effect of Hydrothermal and Enzymatic Treatments on the Physicochemical Properties of Waxy Maize Flour (열수 및 효소 처리에 의한 찰옥수수가루의 물리화학적 특성)

  • Lee, Dong-Jin;Choi, So-Mang;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.165-171
    • /
    • 2016
  • Physicochemical properties of waxy maize flours prepared by hydrothermal and enzymatic treatments were evaluated. Waxy maize flours were hydrothermally treated using heat-moisture treatment (HMT) and annealing (ANN) and enzymatically treated using commercial enzymes (cellulase, proteinase, and pectinase). The HMT-modified waxy maize flours had low water absorption index (WAI), melting enthalpy, viscosity, and crystallinity. However, ANN-modified and enzymatically modified waxy maize flours had high WAI, melting enthalpy, and viscosity. X-ray diffraction analysis of ANN-modified and enzymatically modified waxy maize flours revealed a typical A-type pattern and displayed sharper crystalline peaks than those observed for the control groups (native waxy maize flours). In contrast, the crystallinity of HMT-modified waxy maize flours were decreased by hydrothermal treatment.

Characteristics of Sweet Persimmon Treated with Protopectinase from Bacillus subtilis EK11 (Bacillus subtilis EK11 유래 Protopectinase를 처리한 단감의 특성)

  • 이대희;이승철;황용일
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • In development of the processed food, it is important not only to make the food delicious but to enhance its storage span and thermal stability without change in color, which greatly affects the tastes. Protopectinase (PPase) from Bacillus subtilis EK11 hydrolyses or dissolves protopectin in the middle lamella of plant tissues with the resultant separation of plant cells from each other, called enzymatic maceration. With the PPase, persimmon was enzymatically macerated to separate cells to primary cell wall without damage. Recovery rates of persimmon treated with PPase and mechanical maceration were 95% and 85%, respectively. Total and reducing sugars, crude protein and fat in the enzymatic maceration were well preserved as in the mechanical maceration. Importantly, over 50% of vitamin C, which is the most unstable component during the mechanical maceration, remained with an intact form for one day after the enzymatic treatment. When the suspensions of persimmon macerated with both treatments were stored at 4$^{\circ}C$ for 9 days, the mechanically macerated persimmon suspension was decolorized, whereas decolorization, was not found in the enzymatically macerated persimmon suspension. Moreover the mechanically macerated persimmon was greatly deteriorated after heat treatment at 10$0^{\circ}C$ for 60 min, whereas cells of the enzymatically separated persimmon suspension appeared to be stable, indicating increased thermal stability Thus, the PPase treatment of persimmon could be a better choice for preparation of highly valuable and functional processed food as well as for increase in preservation period.

Enzymatic Solubilization of Thermally Treated Jujube Tissues (효소에 의한 열처리 생대추 조직의 수용화)

  • Choi, Jung-Sun;Hwang, Jae-Kwan;Kim, Chong-Tai;Chung, Kang-Hyun;Lee, Dong-Sun
    • Journal of the Korean Society of Food Culture
    • /
    • v.11 no.5
    • /
    • pp.683-687
    • /
    • 1996
  • Jujube paste was prepared by autoclaving the fresh jujube at 1.2 atm and $120^{\circ}C$ for 30 min and removing the skin and cores. In order to increase the juice yield, the paste was treated with pectinase, cellulase and their combinations. The soluble fractions of enzymatically treated jujube paste were characterized in terms of yield, pH, titratable acidity, color, Bx, transmittance and sugar compositions. The original paste exhibited the water soluble fraction of 57.3%. Of various quality factors, the clarity was the most significantly distinguished between pectinase and cellulase treatments. The cellulase treatment produced the cloudy juice with the yield of 83.60%. On the other hand, the clear juice was produced by the pectinase and combined treatments due to degradation of pectins, whose yields were 79.47% and 85.39%, respectively. The results clearly demonstrated that the pectinase treatments improved the solubilization efficiency and clarity.

  • PDF

Ester Derivatives from Tannase-treated Prunioside A and Their Anti-inflammatory Activities

  • Jun, Chang-Soo;Yoo, Myung-Ja;Lee, Woo-Yiel;Kwak, Kyung-Chell;Bae, Moon-Sung;Hwang, Woo-Taek;Son, Dong-Hwan;Chai, Kyu-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.73-76
    • /
    • 2007
  • Prunioside A, isolated from the methanol extract of Spiraea prunifolia var. Simpliciflora's root, is composed of coumaroyl, monoterpene-type, and glucosyl units. The esterase activity of tannase was used to remove the p-coumaroyl and glucopyranosyl groups. The enzymatically hydrolyzed compound was reacted with various acyl chlorides to synthesize its ester derivatives, which showed the inhibitory effects on NO production in murine machrophage?like RAW 264.7 cells stimulated with lipopolysaccharide and interferon-γ.

Stromal vascular fraction injection to treat intractable radiation-induced rectovaginal fistula

  • Kim, Mijung;Lew, Dae Hyun;Roh, Tai Suk;Song, Seung Yong
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.127-130
    • /
    • 2021
  • Rectovaginal fistula, which can arise after an injury to the vaginal canal or rectum, is a troublesome obstacle for patients' everyday life. In most cases, it can be covered with a local flap, but previous radiation therapy increases the recurrence rate, making it especially difficult to cure. As the application of stromal vascular fraction (SVF) obtained from enzymatically digested autologous adipose tissue has become increasingly common, several reports have advocated its effectiveness for the treatment of refractory wounds. In light of the angiogenic, regenerative characteristics of SVF, it was incorporated as a treatment option in two cases of rectovaginal fistula discussed here. As described in this report, irradiated rectovaginal fistulas in rectal cancer patients were successfully treated with SVF injection, and we suggest SVF as a feasible treatment option for cases of rectovaginal fistula that would otherwise be very difficult to cure.

Effects of lead on ATPase activity in the sciatic nerve of Sprague-Dawley rat (랫드의 대퇴 신경중 ATPase 효소활성에 미치는 납의 영향)

  • 정명규
    • Environmental Analysis Health and Toxicology
    • /
    • v.9 no.1_2
    • /
    • pp.1-8
    • /
    • 1994
  • Nerve conduction impairment in lead neuropathy has been empirically linked to altered nerve myo-inositol metabolism. In most cases of neuropathy, abnormal myo-inositol metabolism is associated with abnormal $Na^+/K^+$ATPase provides a potential mechanism to relate defects of the myo-inositol metabolism in the peripheral nerve treated with lead. Therefore, the effect of lead on the rat sciatic nerve $Na^+/K^+$ATPase and other ATPase of sciatic nerve was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 2-wk lead treated neuropathy rats and age-mached controls administered myo-inositol. $Na^+/K^+$ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Lead reduced 50% reduction in the $Na^+/K^+$ATPase activity in homogenates of sciatic nerve. The 50% reduction in the $Na^+/K^+$ ATPase activity was selectively prevented by myo-inositol treatment. This study suggests that the toxic mechanism of the lead on peripheral nerve may be through reduction in $Na^+/K^+$ATPase activity which has been linked to axonal transport slowing in the rat model of lead neuropathy, via direct changes by the perturbation of the intracelluar sodium or potasium level.

  • PDF

Effect of Sodium Bytyrate on Glycosylation of Recombinant Erythropoietin

  • Chung, Bo-Sup;Jeong, Yeon-Tae;Chang, Kern-hee;Kim, Jong-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1087-1092
    • /
    • 2001
  • The effect of Sodium Butyrate (NaBu) on the N-linked oligosaccharide structure of Erythropoietin (EPO) was investigated. Recombinant human EPO was produced by CHO cells grown in an $MEM{\alpha}$ medium with or without 5 mM NaBu, and purified from the culture supernatants using a heparin-sepharose affinity column and immunoaffinity column. The N-linked oligosaccharides were released enzymatically and isolated by paper chromatography. The isolated oligosaccharides were then labeled with a fluorescent dye, 2-aminobenzamide, and analyzed with MonoQ anion exchange chromatography and GlycosepN amide chromatography for the assignment of a GU (glucose unit) vague. A glycan analysis by HPLC showed that the most significant characteristic effect of NaBu was a reduction in the proportion of glycans with Sri-and tetrasialylated oligodaccharides from $21.30\%$ (tri-) and $14.86\%$ (tetra-) in the control cultures (without NaBu) to $8.72\%$ (tri-) and $1.25\%$ (tetra-) in the NaBu-treated cultures, respectively. It was also found that the proportion of asialo-glycan increased from $12.54\%\;to\;23.6\%$ when treated with NaBu.

  • PDF

Protective Effect of Enzymatically Modified Stevia on C2C12 Cell-based Model of Dexamethasone-induced Muscle Atrophy (덱사메타손으로 유도된 근위축 C2C12 모델에서 효소처리스테비아의 보호 효과)

  • Geon Oh;Sun-Il Choi;Xionggao Han;Xiao Men;Se-Jeong Lee;Ji-Hyun Im;Ho-Seong Lee;Hyeong-Dong Jung;Moon Jin La;Min Hee Kwon;Ok-Hwan Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • This study aimed to investigate the protective effect of enzymatically modified stevia (EMS) on C2C12 cell-based model of dexamethasone (DEX)-induced muscle atrophy to provide baseline data for utilizing EMS in functional health products. C2C12 cells with DEX-induced muscle atrophy were treated with EMS (10, 50, and 100 ㎍/mL) for 24 h. C2C12 cells were treated with EMS and DEX to test their effects on cell viability and myotube formation (myotube diameter and fusion index), and analyze the expression of muscle strengthening or degrading protein markers. Schisandra chinensis Extract, a common functional ingredient, was used as a positive control. EMS did not show any cytotoxic effect at all treatment concentrations. Moreover, it exerted protective effects on C2C12 cell-based model of DEX-induced muscle atrophy at all concentrations. In addition, the positive effect of EMS on myotube formation was confirmed based on the measurement and comparison of the fusion index and myotube diameter when compared with myotubes treated with DEX alone. EMS treatment reduced the expression of muscle cell degradation-related proteins Fbx32 and MuRF1, and increased the expression of muscle strengthening and synthesis related proteins SIRT1 and pAkt/Akt. Thus, EMS is a potential ingredient for developing functional health foods and should be further evaluated in preclinical models.