• Title/Summary/Keyword: enzymatic properties.

Search Result 595, Processing Time 0.032 seconds

Characteristics and Antioxidant Properties of Yanggaeng Containing Enzymatic Hydrolyzed White Ginseng or Red Ginseng (효소 가수분해 백삼, 홍삼을 첨가한 양갱의 품질특성 및 항산화 활성)

  • Suh, Hee-Jae
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.5
    • /
    • pp.418-429
    • /
    • 2021
  • This paper investigates the antioxidant activity and quality characteristics of yanggaeng containing white ginseng and red ginseng extracts and their enzyme hydrolysates that were produced for the purpose of the study. White and red ginseng extracts were hydrolyzed using Rapidase C80 max, Pyr-flo, and Ultimase MFC. Ginsenoside F2 and compound K (CK) were not detected in white and red ginseng before enzymic reaction but were detected in white and red ginseng hydrolyzed through Rapidase C80 max, Pyr-flo, and Ultimase MFC, and the content of CK was the highest in the second enzymic reaction group of red ginseng. Upon preparing yanggaeng containing white and red ginseng before or after enzymatic hydrolysis, the polyphenol content and antioxidant abilities were analyzed. The yanggaeng containing enzyme-hydrolyzed white ginseng and red ginseng showed greater total polyphenol content, superior DPPH radical scavenging activity, superior ABTS radical scavenging activity, and superior FRAP analysis results compared to the yanggaeng that doesn't contain white or red ginseng. As the enzymic reaction was performed in the added white and red ginseng, the antioxidant activity increased significantly (P<0.05). In brightness(L*), non-additive yanggaeng (control group) was the highest, red ginseng yanggaeng (RG) showed the highest redness(a*), and the white ginseng yanggaeng (WG) showed the highest yellowness(b*). In terms of texture, the yanggaeng containing red ginseng with second hydrolysis (RG-T2) showed significantly high results in hardness, springiness, chewiness, cohesiveness, and gumminess (P<0.05). In conclusion, treating white and red ginseng with Rapidase C80 max, Pyr-flo, and Ultimase MFC is very useful in ginsenoside deglycosylation and will produce CK with excellent biological activity. It can also be seen that yanggaeng containing white and red ginseng hydrolyzed with enzymes significantly increase total polyphenol and antioxidant activity compared to the control group (yanggaeng with no added ginseng). These results will be useful as excellent foundational data for the production of functional yanggaeng in the future.

An Experimental Study on the Myocardial Protection Effects of the Cardioplegic Solution (Cardioplegic Solution의 심근보호 효과에 관한 실험적 연구)

  • 이종국
    • Journal of Chest Surgery
    • /
    • v.13 no.4
    • /
    • pp.321-337
    • /
    • 1980
  • The increasing use of cardioplegic solution for the reduction of ischemic tissue injury requires that all cardiplegic solution be carefully assessed for any protective or damaging properties. This study describes functional, enzymatic and structural assessment of the efficiency of three cardioplegic solutions (Young & GIK, Bretschneider, and $K^{+}$ Albumin solution) in a Modified Isolated Rat Heart Model of cardiopulmonary bypass and ischemic arrest. Isolated rat heart were subjected to a 2-minute period of coronary infusion with a cold cardioplegic or a noncardioplegic solution immediately before and also at the midpoint of a 60-minute period of hypothermic ($10{\pm}1$. C) ischemic cardiac arrest. The results of this study were as follow: 1. Spontaneous heart beat after ischemic arrest occured 16 seconds later after Langendorff reperfusion in the Young & GIK group (n=6), and 40 second later in the Bretschneider group (n=6) and 6 minute later in the $K^{+}$ Albumin group (n=6), and 16 minute later in the control group (non-cardioplegia). A good recovery state of spontaneous heart beat was shown in the Young & GIK and Bretschneider groups. 2. The percentage of recorveries of heart function at 30 minute after postischemic working heart perfusion were : heart rate $91.6{\pm}3.1$% (P<0.01)m oeaj airtuc oressyre $83{\pm}3$% (P<0.01), coronary flow $70{\pm}8$% (P<0.05) and aortic flow flow rate $39{\pm}9.3$% (P<0.05) in the Young & GIK group. This percentage of recoveries of the Young & GIK group was significantly greater than the control group. In the Bretschneider group, the percentage of recoveries were : heart rate $87.8{\pm}7.5$%(P<0.05), peak aortic pressure $71{\pm}2.3$% (P<0.05) and aortic flow rate $33.2{\pm}6.6$%(P<0.05). hte percentage of recoveries were significantly greater than in the control group. In the $K^{+}$ Albumin group, recoveries of heart function were poor. 3. Total CPK leakage was $131.2{\pm}12.75$IU/30 min/gm. dry weight in the control group, $50.65{\pm}12.75$IU in the Young & GIK gruop, $69.40{\pm}32.21$Iu in Bretschneider group, and $103.65{\pm}15.47$IU in the $K^{+}$ Albumin group during the 30 minute postischemic Langendorff reperfusion. Total CPK leakage was significantly less (P<0.001) in the Young & GIK group, than in the control group. 4. Direct correlatin between percentage recovery of aortic flow rate and total amount of CPK leakage from Myocardium was noticed.(Correlation Coefficient r = 0.76, P<0.001). 5. Mild perivascular edema was the only finding of light microscopic study of myocardium after 60 minute ischemic arrest with cold cardioplegic solutions and hypothermla.

  • PDF

Hydrolysis of Fish Protein Concentration in an Ultrafiltration Membrane Reactor (한외여과막 반응기를 이용한 FPC의 가수분해)

  • 최정호;변희국;김세권
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.83-91
    • /
    • 2000
  • In order to improve functional properties, enzymatic hydrolysis of FPC (fish protein concentration) was achieved in ultrafiltration membrane reactor (MWCO 5,000). First, insoluble FPC was hydrolyzed by pepsin in batch reactor to decrease the fouling in ultrafiltration membrane reactor, and second hydrolysis was achieved by pronase E in ultrafiltration membrane reactor The optimum operating conditions in batch reactor using pepsin were at temperature 45$^{\circ}C$, pH 2.0 and the ratio of substrate to pepsin, 150 (w/w) After operating for 5hrs under optimum conditions, 89% of total amount of initial FPC was hydrolyzed. The rate constants, $K_{m}$ and V$_{max}$, were 1.25% and 0.89 mg/$m\ell$/min, respectively, and substrate inhibition was occured above 1.5%. The ultrafiltration membrane reactor was operated with recycling rate of 474 $m\ell$/min and transmembrane pressure of 15 psi. The permeate flux was increased by temperature, transmembrane pressure, but the permeate flux was fixed by pH. The optimum ratio of substrate to pronase E was 200(w/w) and the productivity of ultrafiltration membarane reactor was 702 mg/mg -enzyme, that of batch reactor was 51mg/mg-enzyme. Molecular weight distributions tot first and second hydrolysates were from 2,500 Da to 20,000 Da and from 700 Da to 10,000 Da, respectivelyly.

  • PDF

Metal Protease from Streptomyces spp. - I. Isolation of the Strain and the Enzymatic Properties - (Streptomyces 속균(屬菌)이 생성하는 Metal Protease - 제 1 보 : 균(菌)의 분리(分離) 및 효소학적(酵素學的) 성질(成質) -)

  • Yi, Dong-Heui;Yu, Choon-Bal
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 1980
  • A Streptomyces spp. strain SY 79-1 which was capable of producing metal protease was isolated from soil. The optimal pH and temperature of the protease were around pH 8.0 and $45^{\circ}C$, respectively. The stable pH range of the enzyme was between pH 6.0 to 8.0. The enzyme was stable at $45^{\circ}C$, but it lost the activity about 75 % for 5 min and completely for 30 min when it was treated at $60^{\circ}C$. The activity of the enzyme was inhibited by $Hg^{++},\;Cu^{++},\;Ag^{+}$ and activated by $Mg^{++},\;Mn^{++},\;Co^{++},\;but\;Fe^{++},\;Ca^{++},\;Pb^{++}\;and\;Al^{3+}$ did not affect enzyme activity. This enzyme was strongly inhibited by EDTA, but was not inhibited by 2, 4-DNP, ${\rho}$-CMB, ${\varepsilon}$-aminocaproic acid, cysteine, thiourea, citric acid, oxalic acid and sodium arsenate. When cobalt was added to the EDTA-denatured enzyme, the activity of the enzyme was restored.

  • PDF

Purification and Characterization of Lactate Dehydrogenase A4 Isozyme in Mandrin Fish (Siniperca scherzeri) (쏘가리(Siniperca scherzeri) 젖산탈수소효소 A4 동위효소의 정제 및 특성)

  • Cho, Sung-Kyu;Ku, Bo-Ra;An, Hyo-Jung;Park, Eun-Mi;Park, Seon-Young;Kim, Jae-Bum;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.256-263
    • /
    • 2009
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) $A_4$ isozyme in skeletal muscle of mandrin fish (Siniperca scherzeri) was successfully purified by affinity chromatography and ultrafiltration. The molecular weight of the purified LDH $A_4$ isozyme was 140.4 kDa and its isoelectric point (pI) was 7.0. Optimal pH for enzymatic reaction was 7.5. ${K_m}^{PYR}$ and $V_{max}$ value of the purified LDH $A_4$ isozyme were $4.86{\times}10^{-5}$ M and 13.31 mM/min using pyruvate as a substrate, respectively. These kinetic properties of the purified LDH $A_4$ isozyme supported the fact that the mandrin fish was a warm-adapted species. The antibody against the purified LDH $A_4$ isozyme may be used in the metabolic physiological studies of ectothermic vertebrates and in the diagnosis of several human diseases.

Trypsins from the Dark Fleshed Fish(Anchovy, Mackerel, Yellowfin Tuna and Albacore) 1. Purification and Optimal Reaction Conditions (혈합육어(멸치, 고등어, 황다랭이 및 날개다랭이)의 Trypsin 1. 정제와 반응조건)

  • 변재형;조득문;허민수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.448-457
    • /
    • 1993
  • Deterioration of fish muscle is known to occur more quickly in the dark fleshed fish than in the white fleshed fish, causing by their high intestinal proteolytic activity. Muscle degradation which suffer post-mortem autoproteolysis is affected by trypsin with its unique activation function towards other enzymes. To compare physicochemical and enzymatic properties for the trypsins of the dark fleshed fish, trypsins from the viscera of anchovy (Engraulis japonica), and the pyloric caeca of mackerel (Scomber japonicus), yellowfin tuna (Thunnus albacores) and albacore (Thunnus alalunga) were purified through ammonium sulfate fractionation, benzamidine-Sepharose 6B, DEAE-Sephadex A-50, and Sephadex G-75 chromatography Two trypsins from mackerel (designated mackerel trypsin A and mackerel trypsin B), and one each from anchovy, yellowfin tuna and albacore were isolated as electrophoretical homogeneity, The purities of anchovy trypsin, mackerel trypsin A and B, yellowfin tuna trypsin, and albacore trypsin increased to 78.1, 4.8, 9.3, 120, and 160-fold, respectively, compared to crude enzyme solutions. Molecular weights of the trypsins from the dark fleshed fish estimated by SDS-polyacrylamide electrophoresis were ranged from 22kDa to 26kDa. The trypsins contained higher amount of glycine, serine and aspartic acid, and less amount of tryptophan, methionine, lysine and tyrosine. Optimal conditions for amidotici reactions of the enzymes were pH 8.0 and 45$^{\circ}C$ for anchovy trypsin, pH 8.0 and 5$0^{\circ}C$ for mackerel trypsin A and B, pH 9.0 and 55$^{\circ}C$ for yellowfin tuna trypsin, and pH 9.0 and 5$0^{\circ}C$ for albacore trypsin. It was supposed that the habitat temperature of the dark fleshed fish is slightly connected with the optimal reaction temperature of the trypsins of the fish.

  • PDF

Changes in Morphologic and Enzymatic Properties of Beef Myofibrillar Protein by Storage Tmeperature (저장온도에 따른 쇠고기 근원섬유의 형태적, 효소적 성질 변화)

  • 정인철
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.468-474
    • /
    • 1997
  • This study was designed to investigate the changes in meat quality of beef shank, rib and loin during storage at 8$^{\circ}C$. The shear force value(SFV) of beef shank and loin decreased significantly after 6days storage, beef loin was no significant difference during storage. The SFV in early storage period was high in the order of beef rib, loin and shank, but the SFV of beef rib and loin was similar in course of storage period. The Myofibrillar fragmentation index(MFI) of beef shank increased significantly after 6 days storage, but beef rib and loin early storage was high in the order of beef rib, loin and shank. The actomyosin extractability after 3days storage increased in all parts of beef, but beef loin decreased after 6 days storage. In case of Mg2+-ATPase activity of actomyosin, beef shank increased to 3 days storage, and this reached the level of 0 day after 6days. The MG2+-ATPase activity of beef rib and loin was similar, but beef rib in early storage was higher than beef loin. The Ca2+-TPase activity of beef shank increased to 3 days and decreased after 6 days storage, beef rib was not different during storage and beef loin decreased slightly during storage.

  • PDF

Study on Production and Properties of Galactooligosaccharide from Soybean Arabinogalactan (대두 Arabinogalactan으로부터 갈락토올리고당의 생산과 그 특성에 관한 연구)

  • Sin, Hae-Heon;Choe, Hyeong-Taek;Choe, Dong-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.4
    • /
    • pp.497-502
    • /
    • 1997
  • For the purpose of enzymatic production of galactooligosaccharides from soybean arabinogalactan (SAG) hydrolysis, the $\beta$-1, 4-D-arabinogalactanase($\beta$-1, 4-galactanase) from Bacillus sp. HJ-12 was used. The soybean galactooligosaccharides(SOS) were optimally produced in SAG 1%(w/v), pH 8.0, 5$0^{\circ}C$, $\beta$-1, 4-galactanase 20unit/g SAG and 24-40 hour reaction conditions. The produced galactooligosaccharides had visocity of 11,000 cp at 75%(w/v), $25^{\circ}C$. The viscosity of galactooligosaccharides was 80 fold increasing value than that of sucrose solution. Temperature dependence of viscosity of SOS was 4.6 fold higher value than surose solution below than 5$0^{\circ}C$. Less than 50 Brix, the viscosity of SOS was similar with sucrose solution(20-40 cp), but increasing of concentration, the difference of viscosity between SOS and sucrose solution was increased. And, SOS was very stable at pH and temperature.

  • PDF

The Effect of the Hydrogen Bond Network in the $S_1$-pocket on Catalytic Activity of Serine Protease, Achromobacter Protease I (API)

  • Lim, Seong-Il;Byun, Myung-Woo;Choi, Cheong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.158-164
    • /
    • 1998
  • Crystal structural analyses of the API-TLCK complex revealed that the ${\epsilon}$-amino group (NZ) of the lysyl part of TLCK forms hydrogen bonds with OD1 of $Asp^225$ which is a substrate specificity determinant of API, OG of $Ser^214$, O of $Ser^214$, OG1 of $Thr^189$, and O of $Thr^189$ l89/. The ${\beta}$-carboxyl oxygen of $Asp^225$ forms hydrogen bonds with the NE1 of $Trp^182$. From these observations, it is thought that besides $Asp^225$, $Thr^189$, $Ser^214$, and $Trp^182$ may also contribute to the steric specificity for lysine and high proteolytic activity of API. The side-chain hydroxyl groups of $Thr^189$ and $Ser^214$ were removed to elucidate the role of these hydrogen bonds in the $S_1$-pocket. The $k_{cat}$/$K_m$ of T189V, S214A, and T189V.S214A were decreased to 1/4, 1/3, and 1/46, respectively, of the value for native API. The decreased activities were mainly due to the increase of $K_m$. The CD and fluoroscence spectra of the three mutants were similar to those of wild-type API. With regards to the kinetic parameters ($K_i\;and\;k_2$) of mutants for the reaction involving TLCK and DFP, $k_2$decreased by increase of $K_1$ only. These results suggest that the decreased catalytic activity of these mutants is caused by the partial loss of the hydrogen bond network in the $S_1$-pocket. On the other hand, the similarity of enzymatic properties between W182F and the native enzyme suggests that the hydrogen bond between OD2 of $Asp^225$ and NE1 of $Trp^182$ is not directly related to the reaction of $Asp^225$ with the substrate.

  • PDF

Molecular Cloning and Expression of $\beta$-Xylosidase Gene from Thermophilic Alkalophilic Bacillus sp. K-17 into Escheyichia cozi and Bacillus subtilis (고온, 호알칼리성 Bacillus속 K-17 균주의 $\beta$-Xylosidase유전자의 Escherichia coli 및 Bacillus subtilis의 클로닝 및 발현)

  • Sung, Nack-Kie;Chun, Hyo-Kon;Chung, Duck-Hwa;Shim, Ki-Hwan;Kang, In-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.436-439
    • /
    • 1989
  • The chromosomal DNA fragments of thermophilic alkalophilic Bacillus sp, K-17, a potent xylanhydrolyzing bacterium, were ligated to a vector plasmid pBR322 and transformed into Escherichia coli HB101. The plasmid pAX278, isolated from a transformant forming yellow color on the LB agar plate containing 1 mM p-nitrophenyl- $\beta$-xylopyranoside, was found to enable the transformants to produce p-xylosidase. The 5.0 kilobase insert of pAX278 had single sites for EcoRI, PstI, XbaI, and PvuII, and 2 sites for BglII. Biotinylated pAX218 was hybridized to 0.9 kb as well as 5.0 kb fragment from Bacillus sp. K-17 DNA on nitrocellulose filter. pGX718 was constructed by inserting the 5.0 kb HindIII fragment of pGX278 at the HindIII site of pGR71, E. coli and B. subtilis shuttle vector. The enzymatic properties of $\beta$-xylosidase from E. coli HB101 carrying recombinant plasmid were the same those of $\beta$-xylosidase from Bacillus sp. K-17.

  • PDF