• Title/Summary/Keyword: enzymatic production

Search Result 668, Processing Time 0.028 seconds

A New Approach to Produce Resveratrol by Enzymatic Bioconversion

  • Che, Jinxin;Shi, Junling;Gao, Zhenhong;Zhang, Yan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1348-1357
    • /
    • 2016
  • An enzymatic reaction system was developed and optimized for bioconversion of resveratrol from glucose. Liquid enzyme extracts were prepared from Alternaria sp. MG1, an endophytic fungus from grape, and used directly or after immobilization with sodium alginate. When the enzyme solution was used, efficient production of resveratrol was found within 120 min in a manner that was pH-, reaction time-, enzyme amount-, substrate type-, and substrate concentration-dependent. After the optimization experiments using the response surface methodology, the highest value of resveratrol production (224.40 μg/l) was found under the conditions of pH 6.84, 0.35 g/l glucose, 0.02 mg/l coenzyme A, and 0.02 mg/l ATP. Immobilized enzyme extracts could keep high production of resveratrol during recycling use for two to five times. The developed system indicated a potential approach to resveratrol biosynthesis independent of plants and fungal cell growth, and provided a possible way to produce resveratrol within 2 h, the shortest period needed for biosynthesis of resveratrol so far.

Ethanol Fermentation of the Enzymatic Hydrolysates from the Products Pretreated using [EMIM]Ac and Its Co-Solvents with DMF

  • Han, Song-Yi;Park, Chan-Woo;Park, Jae-Bum;Ha, Suk-Jin;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.1
    • /
    • pp.62-66
    • /
    • 2020
  • Ethanol fermentation of the enzymatic hydrolysates from the products pretreated using 1-ethyl-3-methyl-imidazolium acetate ([EMIM]Ac) and its co-solvents with dimethylformamide (DMF) was conducted using Saccharomyces cerevisiae (D452-2). The optical density change due to the yeast cell growth, the consumption amount of monosugars (glucose, xylose), the concentration of acetate, and ethanol production yield were investigated. The co-solvent system lowered inhibition of the growth of the cells. The highest concentration of glucose (7.8 g/L) and xylose (3.6 g/L) was obtained from the enzymatic hydrolysates of the pretreated product by pure [EMIM]Ac. The initial concentration of both monosugars in the enzymatic hydrolysates was decreased with increasing fermentation time. Ethanol of Approximately 3 g/L was produced from the enzymatic hydrolysates by pure [EMIM]Ac and co-solvent with less than 50% DMF.

Production of Ethanol from Agarose by Unified Enzymatic Saccharification and Fermentation in Recombinant Yeast

  • Lee, Ji-Soo;Hong, Soon-Kwang;Lee, Chang-Ro;Nam, Soo-Wan;Jeon, Sung-Jong;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.625-632
    • /
    • 2019
  • The unified saccharification and fermentation (USF) system was developed for direct production of ethanol from agarose. This system contains an enzymatic saccharification process that uses three types of agarases and a fermentation process by recombinant yeast. The $pGMF{\alpha}-HGN$ plasmid harboring AGAH71 and AGAG1 genes encoding ${\beta}-agarase$ and the NABH558 gene encoding neoagarobiose hydrolase was constructed and transformed into the Saccharomyces cerevisiae 2805 strain. Three secretory agarases were produced by introducing an S. cerevisiae signal sequence, and they efficiently degraded agarose to galactose, 3,6-anhydro-L-galactose (AHG), neoagarobiose, and neoagarohexose. To directly produce ethanol from agarose, the S. cerevisiae $2805/pGMF{\alpha}-HGN$ strain was cultivated into YP-containing agarose medium at $40^{\circ}C$ for 48 h (for saccharification) and then $30^{\circ}C$ for 72 h (for fermentation). During the united cultivation process for 120 h, a maximum of 1.97 g/l ethanol from 10 g/l agarose was produced. This is the first report on a single process containing enzymatic saccharification and fermentation for direct production of ethanol without chemical liquefaction (pretreatment) of agarose.

Enzymatic Activity and Amino Acids Production of Predominant Fungi from Traditional Meju during Soybean Fermentation

  • Dong Hyun Kim;Byung Hee Chun;Jae-Jung Lee;Oh Cheol Kim;Jiye Hyun;Dong Min Han;Che Ok Jeon;Sang Hun Lee;Sang-Han Lee;Yong-Ho Choi;Seung-Beom Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.654-662
    • /
    • 2024
  • To investigate the effect of the predominant fungal species from Korean traditional meju and doenjang on soybean fermentation, the enzymatic activity and amino acid production of twenty-two fungal strains were assessed through solid- and liquid-state soybean fermentation. Enzymatic activity analyses of solid-state fermented soybeans revealed different enzyme activities involving protease, leucine aminopeptidase (LAP), carboxypeptidase (CaP), glutaminase, γ-glutamyl transferase (GGT), and amylase, depending on the fungal species. These enzymatic activities significantly affected the amino acid profile throughout liquid-state fermentation. Strains belonging to Mucoromycota, including Lichtheimia, Mucor, Rhizomucor, and Rhizopus, produced smaller amounts of total amino acids and umami-producing amino acids, such as glutamic acid and aspartic acid, than strains belonging to Aspergillus subgenus circumdati. The genera Penicillium and Scopulariopsis produced large amounts of total amino acids and glutamic acid, suggesting that these genera play an essential role in producing umami and kokumi tastes in fermented soybean products. Strains belonging to Aspergillus subgenus circumdati, including A. oryzae, showed the highest amino acid content, including glutamic acid, suggesting the potential benefits of A. oryzae as a starter for soybean fermentation. This study showed the potential of traditional meju strains as starters for soybean fermentation. However, further analysis of processes such as the production of G-peptide for kokumi taste and volatile compounds for flavor and safety is needed.

Effect of Enzymatic Hydrolysis of Cellulose Nanofibers on the Properties of Poly (Vinyl Alcohol) Nanocomposite

  • Han, Song-Yi;Park, Chan-Woo;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.154-159
    • /
    • 2017
  • Enzymatic treatment was conducted to hydrolyze pure cellulose nanofiber (PCNF), holocellulose nanofiber (HCNF), and lignocellulose nanofiber (LCNF) for 6, 24 and 72 hours and thus-obtained nanofibers (1, 3, 5, 10 wt%) were used to reinforce polyvinyl alcohol (PVA). Glucose production yield was increased by enzymatic hydrolysis. Tensile strength and elastic modulus of all PVA nanocomposite reinforced three nanofibers were improved by increasing enzymatic hydrolysis time of nanofibers and these values were higher in order of nanocomposite reinforced with PCNF>HCNF>LCNF. Furthermore, tensile properties of nanocomposite with PCNF were increased by nanofiber content. Thermal stability of PVA was improved by adding nanofibers and by increasing nanofiber content.

Ethanol Production from the Seaweed Gelidium amansii, Using Specific Sugar Acclimated Yeasts

  • Cho, Hyeyoung;Ra, Chae-Hun;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.264-269
    • /
    • 2014
  • For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

Enzymatic Production of 15-Hydroxyeicosatetraenoic Acid from Arachidonic Acid by Using Soybean Lipoxygenase

  • Kim, Baek-Joong;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.359-362
    • /
    • 2014
  • 15-Hydroxyeicosatetraenoic acid (HETE), as a mammalian biologically active metabolite, has anticarcinogenic effect. The conditions of producing 15-HETE from arachidonic acid by using soybean lipoxygenase were optimal at pH 8.5 and $20^{\circ}C$ with 9 g/l arachidonic acid, 54.4 U/ml soybean lipoxygenase, and 4% methanol. Under these optimized conditions, the enzyme produced 9.5 g/l 15-HETE after 25 min, with a molar conversion yield of 99% and a productivity of $22.8gl^{-1}h^{-1}$. To the best of our knowledge, this is the first biotechnological production of 15-HETE.

The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production

  • Park, Jae-Bum;Kim, Jin-Seong;Jang, Seung-Won;Hong, Eunsoo;Ha, Suk-Jin
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Kluyveromyces marxianus is a well-known thermotolerant yeast. Although Saccharomyces cerevisiae is the most commonly used yeast species for ethanol production, the thermotolerant K. marxianus is more suitable for simultaneous saccharification and fermentation (SSF) processes. This is because enzymatic saccharification usually requires a higher temperature than that needed for the optimum growth of S. cerevisiae. In this study, we compared the fermentation patterns of S. cerevisiae and K. marxianus under various temperatures of fermentation. The results show that at a fermentation temperature of $45^{\circ}C$, K. marxianus exhibited more than two fold higher growth rate and ethanol production rate in comparison to S. cerevisiae. For SSF using starch or corn stover as the sole carbon source by K. marxianus, the high temperature ($45^{\circ}C$) fermentations showed higher enzymatic activities and ethanol production compared to SSF at $30^{\circ}C$. These results demonstrate the potential of the thermotolerant yeast K. marxianus for SSF in the industrial production of biofuels.

Effects of Surfactant Tween 80 on Enzymatic Accessibility and Degradation of Orchardgrass (Dactylis glomerata L.) at Different Growth Stages

  • Goto, M.;Bae, Hee-Dong;Yahaya, M.S.;Karita, S.;Wanjae, K.;Baah, J.;Sugawara, K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.83-87
    • /
    • 2003
  • The study evaluates the enzymatic dry matter (DM) degradability and water holding capacity of leaf and stem fractions of orchardgrass (Dactylis glomerata L.) at different growth stages with or without the presence of surfactant Tween 80. While Tween 80 significantly (p<0.05) increased water and enzyme holding capacities in the leaf blades fraction, less was observed in the fraction of leaf sheath and stem of orchardgrass. The enzyme holding capacity in the leaves was also altered more than that for water holding capacity. This resulted in the increased rate and extent of enzymatic hydrolysis of the leaf blade fractions at two growth stages, whereas little was with leaf sheath and stem fractions. It was also observed that at 0.005% concentrations of Tween 80 the enzymatic DM degradability of young leaf blades was higher (p<0.05) by 20-30% compared to that of the control, as well as for water and enzyme holding capacity. For matured leaf blades the DM degradability were increased with over 0.01% concentrations of the surfactant, but the increase was less than leaf blades of young orchardgrass. This result suggests the possibility of using the surfactant Tween 80 to improve forage digestibility in the rumen.