• Title/Summary/Keyword: enzymatic hydrolysate

Search Result 207, Processing Time 0.021 seconds

Enzymatic preparation and antioxidant activities of protein hydrolysates from hemp (Cannabis sativa L.) seeds

  • Hyeon-Ji Yoon;Gyu-Hyeon Park;Yu-Rim Lee;Jeong-Min Lee;Hyun-Lim Ahn;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.434-445
    • /
    • 2023
  • Hemp (Cannabis sativa L.) seeds have recently been attracting attention as a new high-value-added food material owing to their excellent nutritional properties, and research on the development of functional food materials using hemp seeds is actively progressing. This study aimed to evaluate the antioxidant properties of hemp seed protein hydrolysates. Protein hydrolysates were prepared from defatted hemp seed powder (HS) by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain). 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay and SDS-PAGE analysis revealed that HS showed a high degree of hydrolysis after treatment with each enzyme except papain. The total polyphenol content of the protein hydrolysates (<3 kDa) and the RC50 values obtained from two different antioxidant tests showed that alcalase hydrolysate (HSA) had a relatively high level of antioxidant capacity. In addition, treatment with HSA (25-100 ㎍/mL) significantly inhibited linoleic acid peroxidation. These results suggest that hemp seed protein hydrolysates are potential sources of natural antioxidants. Future studies will focus on the identification of active peptides from HSA.

Effects of Enzymatic Hydrolysates from Hamcho (Salicornia herbacea L.) on Blood Glucose and Serum Lipid Composition in Streptozotocin-Induced Diabetic Rats (함초(Salicornia herbacea)의 효소적 가수분해물이 스트렙토조토신-유발 당뇨쥐의 혈당 강하 및 혈청 지질 개선효과)

  • Kim, Kyung-Ran;Choi, Jeong-Hwa;Woo, Mi-Hee;Kim, Young-Hee;Choi, Sang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • This study was designed to investigate the effects of enzymatic hydrolysates (EH) from Hamcho (Salicornia herbacea L.) on blood glucose and serum lipid status in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were divided into normal and 5 diabetic groups. The diabetic groups were fed enzymatic hydrolysate-free control (DM) diets or diets supplemented with 0.02% (DM-2), 0.04% (DM-4), 0.08% (DM-8), and 0.16% (DM-16) of enzymatic hydrolysate for 4 weeks. Body weight gains were lower in five diabetic groups than that of the normal group. Blood glucose was decreased in EH-supplemented groups as compared to the normal group, and especially the lowest blood glucose levels were found in DM-4 and DM-8 groups. Activities of three disaccharidase in the middle part of the intestine, such as maltase, sucrase and lactase, in EH-supplemented groups were significantly lower than those of DM group. There was no significant differences in the activities of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) among all experimental groups. Serum triglyceride in DM group was significantly increased as compared to the normal group, but those of EH-supplemented groups were decreased to the normal level. Total cholesterol level in DM group was higher than EH-supplemented groups and normal group, but that of DM-16 group was significantly decreased to the normal level. HDL cholesterol level in DM group was significantly decreased compared to the normal group, but that of EH-supplemented groups was increased to the normal level. These results suggest that enzymatic hydrolysate from Hamcho has hypoglycemic and hypolipidemic effects on STZ-induced diabetic rats and may be useful as a dietary supplement for the treatment of diabetes.

Recovery of Xylo-oligomer and Lignin Liquors from Rice Straw by Two 2-step Processes Using Aqueous Ammonia Followed by Hot-water or Sulfuric Acid

  • Vi Truong, Nguyen Phuong;Shrestha, Rubee koju;Kim, Tae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.682-689
    • /
    • 2015
  • A two-step process was investigated for pretreatment and fractionation of rice straw. The two-step fractionation process involves first, soaking rice straw in aqueous ammonia (SAA) in a batch reactor to recover lignin-rich hydrolysate. This is followed by a second-step treatment in a fixed-bed flow-through column reactor to recover xylo-oligomer-rich hydrolysate. The remaining glucan-rich solid cake is then subjected to an enzymatic process. In the first variant, SAA treatment in the first step dissolves lignin at moderate temperature (60 and $80^{\circ}C$), while in the second step, hot-water treatment is used for xylan removal at higher temperatures ($150{\sim}210^{\circ}C$). Under optimal conditions ($190^{\circ}C$ reaction temperature, 30 min reaction time, 5.0 ml/min flow rate, and 2.3 MPa reaction pressure), the SAA-hot-water fractionation removed 79.2% of the lignin and 63.4% of the xylan. In the second variant, SAA was followed by treatment with dilute sulfuric acid. With this process, optimal treatment conditions for effective fractionation of xylo-oligomer were found to be $80^{\circ}C$, 12 h reaction time, solid-to-liquid ratio of 1:12 in the first step; and 5.0 ml $H_2SO_4/min$, $170^{\circ}C$, and 2.3 MPa in the second step. After this two-step fractionation process, 85.4% lignin removal and 78.9% xylan removal (26.8% xylan recovery) were achieved. Use of the optimized second variant of the two-step fractionation process (SAA and $H_2SO_4$) resulted in enhanced enzymatic digestibility of the treated solid (99% glucan digestibility) with 15 FPU (filter paper unit) of CTec2 (cellulase)/g-glucan of enzyme loading, which was higher than 92% in the two-step fractionation process (SAA and hot-water).

Processing and Characteristics of Pearl Oyster (Pinctada fucata) Extracts (진주조개(Pinctada fucata) 추출물의 가공 및 품질특성)

  • Kang, Jeong-Goo;Kang, Su-Tae;Kang, Jin-Yeong;Nam, Gi-Ho;Lee, Sung-Man;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.343-349
    • /
    • 2007
  • This study examined the effective utilization of pearl processing by-products. Three extracts of hot-water extract (WE), hydro-cooked extract (HE), and two-step enzymatic hydrolysate (EH) were prepared from pearl oyster muscle, and their characteristics were examined. The moisture, crude protein, volatile basic nitrogen (VBN), and amino-N contents were 97.5-98.0%, 0.5-1.3%, 2.1-4.9 g/100 mL, and 35.0-74.5 g/100 mL, respectively. EH had the lowest VBN and highest amino-N contents. In addition, EH had the highest yields. In terms of its functional properties, EH inhibited angiotensin-I converting enzyme ($IC_{50}$, 1.39 mg/mL) more strongly than the other extracts ($IC_{50}$, 4.17-7.95 mg/mL). The free amino acid contents of WE, HE, and EH were 661, 470 and 1,150 mg/100 mL, respectively. Major amino acids were taurine and glutamic acid. Major inorganic ions were Na, Mg, and Ca. Contents of taste compounds, such as free amino acids, inorganic ions, and quaternary ammonium bases, differed significantly according to the extract methods. Based on the results of chemical experiments and sensory evaluation, the quality of EH was superior to the other extracts, and EH is suitable for use in natural flavoring materials.

Enhancing the Flavor of Pearl Oyster (Pinctada fucata) Extract Using Reaction Flavoring (Reaction Flavoring에 의한 진주조개 (Pinctada fucata) 추출물의 풍미개선)

  • Kang, Jeong-Goo;Nam, Gi-Ho;Kang, Jin-Yeong;Hwang, Seok-Min;Kim, Jeong-Gyun;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.350-355
    • /
    • 2007
  • The optimal substrates and reaction flavoring conditions were examined to develop pearl oyster extract (POE) flavor using the Maillard reaction under a model system. The sugar for the Maillard reaction was glucose, and the amino acid was cysteine, with glycine as the reaction substrate. A three-dimensional response surface method was used to monitor the dynamic changes of the substrates during the Maillard reaction. To enhance the flavor of POE, a two-step enzymatic hydrolysate (Brix $20^{\circ}$) was reacted with the precursors (1:1, v/v). A 2:1:1 mixture of 0.4 M glucose:0.4 M glycine:0.4 M cysteine (v/v) was selected as a suitable reaction system for the reappearance of baked potato odor and boiled meat odor, and masking the shellfish odor. The two-step enzymatic hydrolysate and selected precursors were reacted in a high-pressure reactor to optimize the reaction parameters. The optimum conditions were 150 minutes at $120\;^{\circ}C$ and pH 7.0. The pH was the most critical factor for the response of the baked potato odor and masking the shellfish odor, while the reaction time affected the reappearance of the boiled meat odor.

Cytoprotective Effect of a Neutrase Enzymatic Hydrolysate Derived from Korea Pen Shell Atrina pectinata Against Hydrogen Peroxide -Induced Oxidative Damages in Hepatocytes (산화적 손상에 대한 키조개(Atrina pectinata) 효소 가수분해물의 간세포 보호 효과)

  • Han, Eui Jeong;Shin, Eun-Ji;Kim, Kee-Woong;Ahn, Ginnae;Bae, Tae Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • In this study, we investigated the protective effects of a Neutrase enzymatic hydrolysate derived from Korea pen shell Atrina pectinata (APN) against hydrogen peroxide (H2O2)-induced oxidative damage in hepatocytes. First, we confirmed that APN has antioxidant activities by scavenging 2,2-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) and H2O2 and increasing oxygen radical absorbance capacity (ORAC) value. Also, the treatment of APN increased the cell viability by reducing the intracellular reactive oxygen species (ROS) production in H2O2-stimulated hepatocytes. In addition, APN decreased the sub-G1 DNA contents and the apoptotic body formation increased by H2O2 stimulation. Moreover, APN modulated the protein expression of apoptosis related molecules (Bcl-2, Bax and p53) by suppressing the activation of nuclear factor NFkB and ERK/p38 signaling in H2O2-stimulated hepatocytes. Furthermore, APN led to the activation of Nrf2/HO-1signaling known as antioxidant systems. These results suggest APN protects hepatocytes against oxidative damages caused by H2O2 stimulation.

Inhibition of Lipid Accumulation in 3T3-L1 Adipocytes by Different Enzymatic Hydrolysates of Dried Red Sea Cucumber Stichopus japonicus (건조 방법에 따른 홍해삼(Stipchopus japonicus) 효소 가수분해물의 지방 축적 억제 효과)

  • Kim, Seo-Young;Oh, Jae-Young;Kim, Eun-A;Heo, Soo-Jin;Kim, Kil-Nam;Jeon, You-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.5
    • /
    • pp.707-716
    • /
    • 2020
  • Red sea cucumber Stichopus japonicus, was dried using three methods-far-infrared ray, vacuum, and freeze drying and then enzymatically hydrolyzed using nine proteases: Alcalase, Flavourzyme, Kojizyme, Neutrase, Protamex, trypsin, α-chymotrypsin, and papain. In addition, the potential ability of hydrolysates to inhibit lipid accumulation in 3T3-L1 adipocytes was evaluated. The yield of hydrolysates from red sea cucumbers dried using each method was higher than that of the distilled water extract, and protein contents were either similar or higher. The hydrolysates that exhibited inhibitory effects on lipid accumulation, as demonstrated via Oil red O staining, were those obtained by far-infrared ray drying coupled with Alcalase, Flavourzyme, Kojizyme, or Neutrase treatment. In addition to the advantages of far-infrared drying and the characteristics of Flavourzyme, the Flavourzyme hydrolysate of far-infrared-dried red sea cucumber showed the highest inhibitory effect on lipid accumulation. In addition, this hydrolysate significantly decreased the expression of the protein factor fatty acid-binding protein 4, which is related to the late differentiation of 3T3-L1 adipocytes. Taken together, these results suggest that Flavourzyme hydrolysates from farinfrared-dried red sea cucumber may be used as a functional food and/or a pharmaceutical ingredient for the inhibition of lipid accumulation.

Angiotensin-I Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Food Proteins (식품단백질 효소가수분해물의 Angiotensin-I 전환효소 저해작용)

  • 염동민;노승배;이태기;김선봉;박영호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.2
    • /
    • pp.226-233
    • /
    • 1993
  • Enzymatic hydrolysates of food proteins (defatted soybean cake, egg albumin and casein) were tested for inhibitory activity against angiotensin-I converting enzyme (ACE). Food proteins were hydrolysed with complex enzyme, bromelain, alcalase, $\alpha$-chymotrypsin, trypsin, papain and pepsin by heating method. The hydrolysates obtained from the treatment of complex enzyme and bromelain showed the higher ACE inhibitory activity. ACE inhibitory activity of hydrolysates exhibited a tendency to be increased until 8hrs and increased with increment of concentration. The activity was also stable by heat treatment at 10$0^{\circ}C$ for 20min. Molecular weight of active fraction was about 1, 400 and defatted soybean cake hydrolysate below 1, 400 in case of defatted soybean cake hydrolysate treated with alcalase. Amino acid of the active fractions was abundant in Asp, Glu, Lys, lle, Leu, Ala and Val.

  • PDF

Effects of Lactobacillus helveticus Fermentation on the Ca2+ Release and Antioxidative Properties of Sheep Bone Hydrolysate

  • Han, Keguang;Cao, Jing;Wang, Jinghui;Chen, Jing;Yuan, Kai;Pang, Fengping;Gu, Shaopeng;Huo, Nairui
    • Food Science of Animal Resources
    • /
    • v.38 no.6
    • /
    • pp.1144-1154
    • /
    • 2018
  • Both the calcium and collagen in bone powder are hard to be absorbed by the body. Although enzymatic hydrolysis by protease increased the bio-availability of bone powder, it was a meaningful try to further increase $Ca^{2+}$ release, oligopeptide formation and antioxidant activity of the sheep bone hydrolysate (SBH) by lactic acid bacteria (LAB) fermentation. Lactobacillus helveticus was selected as the starter for its highest protease-producing ability among 5 tested LAB strains. The content of liberated $Ca^{2+}$ was measured as the responsive value in the response surface methodology (RSM) for optimizing the fermenting parameters. When SBH (adjusted to pH 6.1) supplemented with 1.0% glucose was inoculated 3.0% L. helveticus and incubated for 29.4 h at $36^{\circ}C$, $Ca^{2+}$ content in the fermented SBH significantly increased (p<0.01), and so did the degree of hydrolysis and the obtaining rate of oligopeptide. The viable counts of L. helveticus reached to $1.1{\times}10^{10}CFU/mL$. Results of Pearson correlation analysis demonstrated that LAB viable counts, $Ca^{2+}$ levels, obtaining rates of oligopeptide and the yield of polypeptide were positively correlated with each other (p<0.01). The abilities of SBH to scavenge the free radicals of DPPH, OH and ABTS were also markedly enhanced after fermentation. In conclusion, L. helveticus fermentation can further boost the release of free $Ca^{2+}$ and oligopeptide, enhance the antioxidant ability of SBH. The L. helveticus fermented SBH can be developed as a novel functional dietary supplement product.

Development of Natural Seasoning from Alaska Pollack Skin Gelatin Using Continuous Three-Step Membrane Reactor (연속식 3단계 막 반응기를 이용한 명태피 젤라틴으로부터의 천연조미료 개발)

  • 김세권;전유진
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.510-517
    • /
    • 1995
  • The hydrolysates of three kinds [FSEH(first step enzymatic hydrolysate), SSEH(second step enzymatic hydrolysate), and TSEH(third step enzymatic hydyolysate)] were prepared by continuous hydrolysis of Alaska pollack(Theragra chalcogramma) skin gelatin with three-step membrane enzyme reactor. The molecular weight distributions of FSEH, SSEH, and THSE are 9,500∼4,800Da, 6,600∼3,400Da, and 2,300∼900Da, respectively. The contents of amino acid having sweet taste (glycine, proline, serine, alanine, hydroxyproline, glutamic acid, and aspartic acid) were about 70% of total amino acid being in the three kind hydrolysates. We also tried preparing of natural seasonings (complex seasoning and enzymeatic hydrolysale sauce) using the hydrolysates. From the results of sensory evaluations, complex seasoning containing TSEH was nearly equal to shellfish complex seasoning on the market. The mixture sauce which was made by mixing of 80% enzymatic hydrolysis sauce and 20% fermented soy sauce, was at least similar to the tradition soybean sauce in product quality, too.

  • PDF