• Title/Summary/Keyword: enzymatic conversion

Search Result 193, Processing Time 0.022 seconds

Optimal Conditions for Phenylethanol Galactoside Synthesis using Escherichia coli β-Galactosidase (대장균 베타-갈락토시데이즈를 이용한 Phenylethanol Galactoside 합성 조건의 최적화)

  • Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-106
    • /
    • 2021
  • To circumvent the skin problem from phenylethanol (PhE), we have studied on the enzymatic synthesis of phenylethanol galactoside (PhE-gal) as an alternative to PhE. Base on the previous study, we optimized the reaction conditions for PhE-gal synthesis from PhE using E. coli β-galactosidase (β-gal). The optimal amount of β-gal, PhE concentration, pH, and temperature for PhE-gal synthesis were 0.45 U/ml, 1%, 8.0, 40℃, respectively. Under these conditions, about 81.9 mM PhE was converted into about 47.4 mM PhE-gal, in which the conversion yield was about 57.9%. Meanwhile, when the reaction mixture containing PhE and PhE-gal was mixed and fractionated with water-immiscible solvent (EA or MC), it was observed that PhE-gal was distributed in water phase, and PhE was distributed in solvent phase. Additionally, PhE-gal was clearly distributed into water phase when MC was used, but PE-gal was not when EA was used. In the future, we are planning to carried out the continuing study on developing an alternative cosmetic preservative using PhE-gal.

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

Importance of C-26 Demethylation for Homeostatic Regulation of Brassinosteroids in Seedling Shoots of Zea mays L (옥수수 유식물 신초에서 Brassinosteroids의 항상성 조절을 위반 C-26 탈메틸 반응의 중요성)

  • Park, Hyun-Hee;Kim, Young-Soo;Kim, Seong-Ki
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • Regulatory mechanism for endogenous levels of castasterone (CS) and its biosynthetic precursors in shoots of maize was investigated by the use of enzyme solution prepared from the plant tissue. When [$^2H_0$]- and [$^2H_6$]-CS was used as substrates, [$^2H_0$]-26-norCS and [$^2H_3$]-28-norCS were identified as products, indicating that [$^2H_0$]- and [$^2H_6$]-CS are differently metabolized into [$^2H_0$]-26-norCS and [$^2H_3$]-28-norCS by C-26 and C-28 demethylation, respectively. This suggests that both C-26 and C-28 demethylation can be involved in CS catabolism. In fact that C-28 demethylation only occurred when isotope labeled substrate was used, however, C-26 demethylation is thought be a natural reaction occurred in the maize shoots. When 6-deoxoteasterone (6-deoxoTE) was used, 6-deoxo-26-norTE and 3-dehydro-6-deoxo-26-norTE as well as 6-deoxo-3-dehydroTE and 6-deoxotyphasterol (6-deoxoTY) were identified as enzyme products. When 6-deoxoTY was added, 6-deoxo-26-norTY as well as 6-deoxo-3-dehydroTE and 6-deoxoTE was identified as products. These indicate that C-26 demethylation of 6-deoxoTE, 6-deoxo-3-dehydroTE and 6-deoxoTY as well as a reversible C-3 epimerization from 6-deoxoTE to 6-deoxoTY intermediated by 6-deoxo-3-dehydroTE are operative in the maize shoots, demonstrating that endogenous levels of biosynthetic precursors of CS are also controlled by C-26 demethylation. Therefore, it is thought that C-26 demethylation is an important and a common deactivation process which functions to maintain steady state levels of endogenous brassinosteroids in the maize shoots.