• 제목/요약/키워드: enzymatic bioconversion

검색결과 36건 처리시간 0.027초

꽃게(Blue Crab) 가공 식품 제조 공정상 발생된 폐수 및 폐기물의 혐기성 생분해 가능성(II) -공정상 발생된 폐기물의 혐기성 생분해 가능성 증대를 위한 효소적 전처리- (Anaerobic Bioconversion Potential of Blue Crab Processing Waste and Wastewater(II) -Enzymatic Pretreatment for Improving the Anaerobic Bioconversion Potential of Blue Crab Processing Wastes-)

  • 이형집
    • 상하수도학회지
    • /
    • 제12권2호
    • /
    • pp.115-126
    • /
    • 1998
  • In use of anaerobic bioconversion shellfish wastes present special problems, since the chitinous structures in the shell faction degrade very slowly in an anaerobic environment. Enzymatic pretreatment method was evaluated for improving the anaerobic bioconversion potential of blue crab processing wastes. An enzymatic pretreatment using chitinase enhanced the ultimate methane yield and biodergradation rate constant for total crab solid wastes by 15% and 19% respectively, above those of the untreated wastes. When the enzymatic pretreatment applied to the shell fraction alone, it resulted in increase of 34% in the ultimate methane yield and 38% in the reaction rate. The results indicate that anaerobic bioconversion of these wastes is technically feasible and enzymatic pretreatment will improve the efficiency of the process.

  • PDF

대장균에서 대량 발현된 Streptomyces peucetius유래 Aklavinone 11-Hydroxylase효소의 최적 가용화 조건 (Optimization of Refolding Conditions for the Aklavinone 11-Hydroxylase of Streptomyces peucetius Overexpressed in Escherichia coli.)

  • 민우근;홍영수;최용경;이정준;홍순광
    • 한국미생물·생명공학회지
    • /
    • 제26권4호
    • /
    • pp.365-368
    • /
    • 1998
  • The aklavinone 11-hydroxylase which was overexpressed using T7 promoter in E. coli could be detected in SDS-PAGE only in insoluble precipitate without any detectable enzyme activity. The insoluble enzyme was solubilized in 6M guanidine$.$HCl solution and their refolding ability was tested under various conditions. When the enzymatic activity was checked by the bioconversion experiment, stepwise dialysis against 6M, 3M, 1M guanidine$.$HCl and finally 100 mM potassium phosphate buffer of the solubilized protein gave the best bioconversion efficiency. The aklavinone 11-hydroxylase showed its enzymatic activity in the reaction buffer containing NADPH with vigorous shaking. The enzymatic activity was lost during partial purification and regained by the addition of crude extract of S. lividans in the reaction mixture. This effect was confirmed to due to some low-molecular weight component(s) in the crude extract, because the addition of dialyzed crude extract could not recover the enzymatic activity.

  • PDF

D,L-ATC로 부터 L-Cysteine으로의 Bioconversion에 관여하는 효소의 특성 (Enzymatic Characteristics in the Bioconversion of D,L-ATC to L-Cysteine)

  • 류옥희;신철수
    • 한국미생물·생명공학회지
    • /
    • 제18권1호
    • /
    • pp.49-55
    • /
    • 1990
  • D,L-2-aminothiazoline-4-carboxylic acid(D,L-ATC)로 부터 L-cysteine으로의 bioconversion에 대한 특성을 살펴보았다. Pseudomonas species의 배양중에 D,L-ATC를 첨가하여 균체내에 그 관여되는 효소를 유도, 생성시키고 균체만을 모은 후 파쇄하여 조효소액을 제조하였다. 실험결과, DL-ATC로 부터 L-형의 cysteine 만이 생성되며, 이 반응에 관여되는 효소는 cofactor로서 Mn이온을 필요로 하며, Mn 이온의 첨가에 의해 L-cysteine의 생성량이 수십배 증가되었다. 그러나, 이 효소는 생성물인 L-cysteine에 의해 feedback inhibition을 받았다. 한편, L-cysteine의 분해효소가 조효소액 내에 존재하며 그 효소반응의 저해제없이는 생성된 L-cysteine의 대부분이 분해되었다. 반면, 매우 효과적인 효소저해제인 hydroxylamine의 첨가로 L-cysteine의 분해를 거의 방지할 수 있었다.

  • PDF

Bioconversion of Lignocellulose Materials

  • Pothiraj, C.;Kanmani, P.;Balaji, P.
    • Mycobiology
    • /
    • 제34권4호
    • /
    • pp.159-165
    • /
    • 2006
  • One of the most economically viable processes for the bioconversion of many lignocellulosic waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignocellulosic as growth substrate. Examination of the lignocellulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and ${\beta}-glucosidases$, but very low level of recognized lignin degrading enzymes.

A New Approach to Produce Resveratrol by Enzymatic Bioconversion

  • Che, Jinxin;Shi, Junling;Gao, Zhenhong;Zhang, Yan
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1348-1357
    • /
    • 2016
  • An enzymatic reaction system was developed and optimized for bioconversion of resveratrol from glucose. Liquid enzyme extracts were prepared from Alternaria sp. MG1, an endophytic fungus from grape, and used directly or after immobilization with sodium alginate. When the enzyme solution was used, efficient production of resveratrol was found within 120 min in a manner that was pH-, reaction time-, enzyme amount-, substrate type-, and substrate concentration-dependent. After the optimization experiments using the response surface methodology, the highest value of resveratrol production (224.40 μg/l) was found under the conditions of pH 6.84, 0.35 g/l glucose, 0.02 mg/l coenzyme A, and 0.02 mg/l ATP. Immobilized enzyme extracts could keep high production of resveratrol during recycling use for two to five times. The developed system indicated a potential approach to resveratrol biosynthesis independent of plants and fungal cell growth, and provided a possible way to produce resveratrol within 2 h, the shortest period needed for biosynthesis of resveratrol so far.

Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi

  • Park, Boyeon;Hwang, Hyelyeon;Lee, Jina;Sohn, Sung-Oh;Lee, Se Hee;Jung, Min Young;Lim, Hyeong In;Park, Hae Woong;Lee, Jong-Hee
    • Journal of Ginseng Research
    • /
    • 제41권4호
    • /
    • pp.524-530
    • /
    • 2017
  • Background: Panax ginseng is a physiologically active plant widely used in traditional medicine that is characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical, enzymatic, or microbial transformation. Methods: To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion products using LC-MS/MS mass spectrometer. Results: L. mesenteroides WiKim19 and Pediococcus pentosaceus WiKim20 converted ginsenoside Rb1 into the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with b-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of b-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB). Conclusion: Ginsenoside Rg5 concentration of five LABs have ranged from ${\sim}2.6{\mu}g/mL$ to $6.5{\mu}g/mL$ and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.

목질바이오매스의 효소 당화 기술에 관한 연구 동향 (A Research Trend of Enzymatic Hydrolysis of Lignocellulosic Biomass : A Literature Review)

  • 김영숙
    • Journal of Forest and Environmental Science
    • /
    • 제26권2호
    • /
    • pp.137-148
    • /
    • 2010
  • The high costs for ethanol production with lignocellulosic biomass as a second generation energy materials currently deter commercialization of lignocellulosic biomass, especially wood biomass which is considered as the most recalcitrant material for enzymatic hydrolysis mainly due to the high lignified structure and the nature of the lignin component. Therefore, overcoming recalcitrance of lignocellulosic biomass for converting carbohydrates into sugar that can subsequently be converted into biobased fuels and biobased products is the primary technical and economic challenge for bioconversion process. This study was mainly reviewed on the research trend of the enhancement of enzymatic hydrolysis for lignocellulosic biomass after pretreatment in bioethanol production process.

Study on the promotion of inflammation and whitening of natural materials using bioconversion technology

  • Lee, Se-Won;Lim, Jeong-Muk;Lee, Seong-Hyeon;Lee, Jeong-Ho;Oh, Byung-Teak
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 추계학술대회
    • /
    • pp.116-116
    • /
    • 2018
  • Bioconversion, the enzymatic process by microorganism on organic precursor to desired products. The natural extract is converted into a form that can be easily absorbed into the skin, while scaling up of to higher quantity is possible. Selection of naturally processed raw material rather than chemically processed is preferred. Therefore, fermentation was carried out by mixing Rubus coreanus Miquel, soybean, Zanthoxylum schinifolium as bioconverting materials, the possibility of inflammation, whitening material were checked. In this study, useful microorganisms were isolated from various salted fish, and 16S rDNA sequence was analyzed to confirm their genetic characteristics. Combining the three natural materials using bioconversion technology to study their activity before and after fermentation. To evaluate the antioxidant activity and the active ingredient content the DPPH radical scavenging activity and the total polyphenol content were examined. Raw 264.7 cells were used to evaluate MTT assay, NO and $TNF-{\alpha}$ production inhibitory activity. Also, to evaluate the whitening activity, tyrosinase inhibitory activity and melanin formation inhibitory activity were measured using B16F10 cells. In total 34 strains were obtained from various salted fish. The effective strains useful for the bioconversion process, showed that DPPH radical scavenging ability and polyphenol content were increased in the two kinds of microbial treatment groups compared to the untreated group. 16S rDNA sequencing analysis of the strains showed excellent in Pediococcus pentosaceus B1 in comparison. An increase of up-to 156% in anti-oxidative activity and 141% in polyphenol content was observed after bioconversion. In addition, after mixed fermentation the toxidty of Raw 264.7 and B16F10 cells tended to decrease and a significant increase was observed in anti-inflammatory activity as well. Also, tyrosinase activity and melanin significantly. synthesis decreased significantly.

  • PDF

Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes

  • Lee, Charles C.;Kibblewhite, Rena E.;Paavola, Chad D.;Orts, William J.;Wagschal, Kurt
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.77-83
    • /
    • 2017
  • Lignocellulosic biomass represents a potentially large resource to supply the world's fuel and chemical feedstocks. Enzymatic bioconversion of this substrate offers a reliable strategy for accessing this material under mild reaction conditions. Owing to the complex nature of lignocellulose, many different enzymatic activities are required to function in concert to perform efficient transformation. In nature, large multienzyme complexes are known to effectively hydrolyze lignocellulose into constituent monomeric sugars. We created artificial complexes of enzymes, called rosettazymes, in order to hydrolyze glucuronoxylan, a common lignocellulose component, into its cognate sugar ${\small{D}}$-xylose and then further convert the ${\small{D}}$-xylose into ${\small{D}}$-xylonic acid, a Department of Energy top-30 platform chemical. Four different types of enzymes (endoxylanase, ${\alpha}$-glucuronidase, ${\beta}$-xylosidase, and xylose dehydrogenase) were incorporated into the artificial complexes. We demonstrated that tethering our enzymes in a complex resulted in significantly more activity (up to 71%) than the same amount of enzymes free in solution. We also determined that varying the enzyme composition affected the level of complex-related activity enhancement as well as overall yield.

목질계 바이오에탄올 생산의 전처리 기술에 관한 연구동향 (A Research Trend of Pretreatment in Bioethanol Production Process with Lignocellulosic Biomass: A Literature Review)

  • 김영숙
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권3호
    • /
    • pp.274-286
    • /
    • 2009
  • 목질바이오매스 원료는 구성성분 특성 및 분포상 생물 화학적 전환에 매우 큰 장애요소를 지니고 있다. 특히 셀룰로우스를 이용하고자 하는 경우의 리그닌 장애는 해결해야 할 중요한 요소로 인식되고 있어 바이오에탄올 생산에서도 당화공정에 앞서 전처리 공정이 필연적이며 최종 에탄올 수율 및 생산비용에도 영향이 커서 다양한 전처리 방법들이 제안되고 있는 상황이다. 본 총설은 문헌연구를 통하여 최근 세계적으로 진행되고 있는 목질바이오매스 대상의 전처리 연구에 대한 동향을 파악하고, 이들 전처리공정의 특징 및 장단점을 분석하여 국내 목질바이오매스 원료 및 생산여건에 적합한 공정 연구 개발에 필요한 기초자료를 마련하고자 하였다. 국내외적으로 활발하게 연구되는 주요 전처리 기술은 각각 공정 및 경제성 면에서 장단점이 있어 원료나 생산여건 환경에 따라 적합한 전처리 공정을 선택해야 할 필요가 있는 것으로 고찰되었다.