• Title/Summary/Keyword: enzymatic antioxidant

Search Result 257, Processing Time 0.023 seconds

Antioxidant Effect of Enzymatic Hydrolysate from Sargassum thunbergii Using Vibrio crassostreae PKA 1002 Crude Enzyme (Vibrio crassostreae PKA 1002 유래 조효소액에 의한 지충이 (Sargassum thunbergii) 분해물의 항산화 효과)

  • Bark, Si-Woo;Kim, Koth-Bong-Woo-Ri;Kim, Min-Ji;Kang, Bo-Kyeong;Pak, Won-Min;Ahn, Na-Kyung;Choi, Yeon-Uk;Park, Ji-Hye;Bae, Nan-Young;Lim, Sung-Mee;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • An alginate degrading enzyme from the Vibrio crassostreae PKA 1002 strain was used to hydrolyze the water extract of Sargassum thunbergii. To obtain the optimum degrading conditions for the S. thunbergii water extract, the mixture of the water extract and enzyme was incubated at 30℃ for 0, 3, 6, 12, and 24 h, and its alginate degrading ability was measured by reducing sugar and viscosity. A temperature of 30℃ for a period of 6 h was found to be the optimal condition for the enhancement of the alginate’s degrading ability. The pH of the enzymatic hydrolysate was not significantly different from that of the water extract. Overall lightness decreased, but redness and yellowness increased after enzymatic hydrolysis. Total phenolic compounds did not differ between the water extract and the enzymatic hydrolysate. DPPH radical scavenging activity and the reducing power of the enzymatic hydrolysate were lower than those of the water extract. However, the chelating effect of the enzymatic hydrolysate (80.08% at 5 mg/ml) was higher than that of the water extract (62.29%). These results indicate that the enzymatic hydrolysate possesses an anti-oxidant activity by way of the action of the chelating effect.

Production of ginsenoside F1 using commercial enzyme Cellulase KN

  • Wang, Yu;Choi, Kang-Duk;Yu, Hongshan;Jin, Fengxie;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.121-126
    • /
    • 2016
  • Background: Ginsenoside F1, a pharmaceutical component of ginseng, is known to have antiaging, antioxidant, anticancer, and keratinocyte protective effects. However, the usage of ginsenoside F1 is restricted owing to the small amount found in Korean ginseng. Methods: To enhance the production of ginsenoside F1 as a 10 g unit with high specificity, yield, and purity, an enzymatic bioconversion method was developed to adopt the commercial enzyme Cellulase KN from Aspergillus niger with food grade, which has ginsenoside-transforming ability. The proposed optimum reaction conditions of Cellulase KN were pH 5.0 and $50^{\circ}C$. Results: Cellulase KN could effectively transform the ginsenosides Re and Rg1 into F1. A scaled-up biotransformation reaction was performed in a 10 L jar fermenter at pH 5.0 and $50^{\circ}C$ for 48 h with protopanaxatriol-type ginsenoside mixture (at a concentration of 10 mg/mL) from ginseng roots. Finally, 13.0 g of F1 was produced from 50 g of protopanaxatriol-type ginsenoside mixture with $91.5{\pm}1.1%$ chromatographic purity. Conclusion: The results suggest that this enzymatic method could be exploited usefully for the preparation of ginsenoside F1 to be used in cosmetic, functional food, and pharmaceutical industries.

Transformation Techniques for the Large Scale Production of Ginsenoside Rg3 (Ginsenoside Rg3의 함량증가를 위한 변환 기술)

  • Nam, Ki Yeul;Choi, Jae Eul;Park, Jong Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.5
    • /
    • pp.401-414
    • /
    • 2013
  • Ginsenoside Rg3 (G-Rg3) contained only in red ginseng has been found to show various pharmacological effects such as an anticancer, antiangiogenetic, antimetastastic, liver protective, neuroprotective immunomodulating, vasorelaxative, antidiabetic, insulin secretion promoting and antioxidant activities. It is well known that G-Rg3 could be divided into 20(R)-Rg3 and 20(S)-Rg3 according to the hydroxyl group attached to C-20 of aglycone, whose structural characteristics show different pharmacological activities. It has been reported that G-Rg3 is metabolized to G-Rh2 and protopanaxadiol by the conditions of the gastric acid or intestinal bacteria, thereby these metabolites could be absorbed, suggesting its absolute bioavailability (2.63%) to be very low. Therefore, we reviewed the chemical, physical and biological transformation methods for the production on a large scale of G-Rg3 with various pharmacological effects. We also examined the influence of acid and heat treatment-induced potentials on for the preparation method of higher G-Rg3 content in ginseng and ginseng products. Futhermore, the microbial and enzymatic bio-conversion technologies could be more efficient in terms of high selectivity, efficiency and productivity. The present review discusses the available technologies for G-Rg3 production on a large scale using chemical and biological transformation.

Effects of Chitosan and Lactic Acid on Enzymatic Activities and Bioactive Compounds during Germination of Black Rice

  • Kim, Kwan-Soo;Jang, Hae-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.199-205
    • /
    • 2004
  • The effect of chitosan on enzymatic activities and on bioactive compounds was characterized during germination at $25^{\circ}C$ for 7 days to search for a method to produce a germinated black rice. The germination rate was reduced by the addition of lactate and chitosan. The rotting rate was greatly decreased by chitosan, suggesting that the addition of chitosan into a germination solution might be an effective method for controlling fungal contamination during the germination of cereals. The addition of 100 and 200 ppm chitosan increased $\alpha$-amylase activity after 7 days by up to 152 % and 197 %, respectively. The activities of $\beta$-amylase and $\beta$-glucosidase were lower with 200 ppm chitosan than in distilled water and 100 ppm lactate. The amount of total soluble phenolics and total flavonoids decreased rapidly for four days and thereafter remained constant until the seventh day. The antioxidant activity of germinated black rice, in terms of hydrogen-donating activity, increased slowly and did not correspond to the changes of total soluble phenolics and total flavonoids. The amount of phytic acid was reduced by the addition of 200 ppm chitosan compared to distilled water, indicating that chitosan could be used as an elicitor for the increase of phytase activity during the germination of black rice.

Glycosylation of Semi-Synthetic Isoflavene Phenoxodiol with a Recombinant Glycosyltransferase from Micromonospora echinospora ATCC 27932

  • Seo, Minsuk;Seol, Yurin;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.657-662
    • /
    • 2022
  • Glycosyltransferase (GT)-specific degenerate PCR screening followed by in silico sequence analyses of the target clone was used to isolate a member of family1 GT-encoding genes from the established fosmid libraries of soil actinomycetes Micromonospora echinospora ATCC 27932. A recombinant MeUGT1 was heterologously expressed as a His-tagged protein in E. coli, and its enzymatic reaction with semi-synthetic phenoxodiol isoflavene (as a glycosyl acceptor) and uridine diphosphate-glucose (as a glycosyl donor) created two different glycol-attached products, thus revealing that MeUGT1 functions as an isoflavonoid glycosyltransferase with regional flexibility. Chromatographic separation of product glycosides followed by the instrumental analyses, clearly confirmed these previously unprecedented glycosides as phenoxodiol-4'-α-O-glucoside and phenoxodiol-7-α-O-glucoside, respectively. The antioxidant activities of the above glycosides are almost the same as that of parental phenoxodiol, whereas their anti-proliferative activities are all superior to that of cisplatin (the most common platinum chemotherapy drug) against two human carcinoma cells, ovarian SKOV-3 and prostate DU-145. In addition, they are more water-soluble than their parental aglycone, as well as remaining intractable to the simulated in vitro digestion test, hence demonstrating the pharmacological potential for the enhanced bio-accessibility of phenoxodiol glycosides. This is the first report on the microbial enzymatic biosynthesis of phenoxodiol glucosides.

Enzymatic Preparation and Antioxidant Activities of Protein Hydrolysates from Tenebrio molitor Larvae (Mealworm) (갈색거저리 유충 단백가수분해물의 제조 및 항산화 활성)

  • Yu, Mi-Hee;Lee, Hyo-Seon;Cho, Hye-Rin;Lee, Syng-Ook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.435-441
    • /
    • 2017
  • The present study was carried out to evaluate the applicability of Tenebrio molitor larvae (mealworm) as a health functional food material in order to contribute to the development of the domestic insect industry and health functional food industry. Protein hydrolysates were prepared from mealworm powder by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain), and the hydrolysates were then tested for their antioxidant activities. Based on available amino group contents and sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses, mealworms treated with alcalase ($4,781.39{\mu}g/mL$), flavourzyme ($5,429.35{\mu}g/mL$), or neutrase ($3,155.55{\mu}g/mL$) for 24 h showed high degree of hydrolysis (HD) value, whereas HD values of bromelain ($1,800{\mu}g/mL$) and papain-treated ($1,782.61{\mu}g/mL$) mealworms were much lower. Protein hydrolysates showing high HD values were further separated into > 3 kDa and ${\leq}3kDa$ fractions by a centrifugal filter system and then lyophilized, and the production yields of the low molecular weight protein hydrolysates (${\leq}3kDa$) by alcalase, flavourzyme, and neutrase were 42.05%, 26.27%, and 30.01%, respectively. According to the RC_{50} values of the protein hydrolysates (${\leq}3kDa$) obtained from three different antioxidant analyses, all three hydrolysates showed similar antioxidant activities. Thus, alcalase hydrolysates showing the highest production yield of low molecular weight protein hydrolysates were further tested for their inhibitory effects on peroxidation of linoleic acid by measuring thiobarbituric acid values, and the results show that peroxidation of untreated linoleic acid increased dramatically during 6 days of incubation. However, pretreatment with the hydrolysates ($100{\sim}800{\mu}g/mL$) significantly inhibited linoleic acid peroxidation in a dose-dependent manner over 6 days.

Biological Analysis of Enzymatic Extracts from Sargassum fulvellum Using Polysaccharide Degrading Enzyme (Polysaccharide Degrading Enzyme을 이용한 참모자반 효소분해 추출물의 생리활성 연구)

  • Cho, Eun Kyung;Kang, Su Hee;Choi, Young Ju
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.349-355
    • /
    • 2013
  • SC092 strain, producing a polysaccharide degrading enzyme, was isolated from the seawater. This strain was identified as Microbulbifer sp. using the comparative sequence analysis against known 16S rRNA sequence. A polysaccharide degrading enzyme from this strain was used to acquire the enzymatic extracts of Sargassum fulvellum. DPPH radical scavenging and SOD activity of the enzyme extracts of S. fulvellum were about 61.9% and 82.9% at 2 mg/mL, respectively. Nitrite scavenging activities was 52.5% at 2 mg/mL on pH 1.2. In addition, ${\alpha}$-glucosidase inhibitory activity was also increased in a dose-dependent manner and was about 52.7% at 2 mg/mL. To determine the influence of enzyme extracts of S. fulvellum on alcohol metabolism, the generating activity of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) were measured. ADH and ALDH activities were 118.0% and 177% at 2 mg/mL, respectively. ${\alpha}$-glucosidase inhibitory activity of enzyme extracts of S. fulvellum was remarkably increased in a dose-dependent manner and was about 52.7% at 2 mg/mL. These results indicate alcoholizing and ${\alpha}$-glucosidase inhibitory activities can be enhanced by the enzymatic extracts of S. fulvellum.

Enzymatic Hydrolysis of Silk Sericin and Its Anti-oxidative Effect (효소에 의한 실크 세리신의 가수분해와 항산화 효과)

  • Lee, Ki-Hoon;Kim, Moo-Kon;Oh, Han-Jin;Lee, Ji-Young;Lee, Jeong-Yong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • In this study, we hydrolyzed hot-water extracted sericin with single or two enzymes and investigated anti-oxidative effect on DPPH free radical and inhibitory effect on tyrosinase activity of the sericin hydrolysates. Alcalase, flavourzyme, and protamex were effective in hydrolyzing sericin. Sericin was degraded into the range of 20 ${\sim}$ 30 kDa. The sericin hydrolysate was shown to have stronger antioxidant properties than the original sericin. In the case of flavourzyme and protamex combination, the scavenging effect of sericin hydrolysate on DPPH radical was increased up to about 85 %. However, the inhibitory effect on tyrosinase activity of enzymatic hydrolysates was lower than that of the original sericin. After fractionation of sericin hydrolysates, we found that F2 and P3 fraction has higher inhibitory effect on tyrosinase activity compared to other fractions.

Non-enzymatic Antioxidant Status and Biochemical Parameters in the Consumers of Pan Masala Containing Tobacco

  • Shrestha, Raj;Nepal, Ashwini Kumar;Lal Das, Binod Kumar;Gelal, Basanta;Lamsal, Madhab
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4353-4356
    • /
    • 2012
  • Background: Tobacco consumption is one of the leading causes of oral submucous fibrosis, oral cancer and even premature death. The present study was designed to compare the biochemical parameters and non-enzymatic antioxidant status and the lipid peroxidation products in pan masala tobacco users as compared with age-matched non-user controls. Methods: Pan masala and tobacco users of age $33.2{\pm}9.94$ years and age-matched controls ($31.2{\pm}4.73$ years) were enrolled for the study. Plasma levels of vitamin E, vitamin C, albumin, bilirubin, uric acid, glucose, urea, creatinine, aspartate amino transferase (AST), alanine amino transferase (ALT) were measured by standard methods. Serum malondialdehyde (MDA) levels were estimated as a measure of lipid peroxidation. Results: In the pan masala tobacco users, as compared to the controls, the level of vitamin C ($68.5{\pm}5.9$ vs $97.9{\pm}9.03{\mu}mol/L$, $p{\leq}0.05$) vitamin E ($18.4{\pm}5.3$ vs $97.9{\pm}9.03{\mu}mol/L$, $p{\leq}0.001$), albumin ($37.5{\pm}7.01$ vs $44.3{\pm}9.99g/L$, $p{\leq}0.001$), and malondialdehyde ($10.8{\pm}1.29$ vs $1.72{\pm}1.15nmol/ml$, $p{\leq}0.001$) were found to be significantly altered. Malondialdehyde was significantly correlated with vitamin E (r=1.00, p<0.001) and vitamin C (r=1.00, p<0.001) in pan masala tobacco users. Serum levels of AST ($31.0{\pm}16.77$ IU) and ALT ($36.7{\pm}31.3$ IU) in the pan masala tobacco users were significantly raised as compared to the controls (AST, $25.2{\pm}9.51$ IU, p=0.038; ALT, $26.2{\pm}17.9$ IU, p=0.038). Conclusion: These findings suggest that pan masala tobacco users are in a state of oxidative stress promoting cellular damage. Non-enzymatic antioxidants are depleted in pan masala tobacco users with subsequent alteration in the biochemical parameters. Supplementation of antioxidants may prevent oxidative damage in pan masala tobacco users.

Biological Analysis of Enzymatic Extracts from Capsosiphon Fulvescens Using the Microbulbifer sp. AJ-3 Marine Bacterium (해양미생물 Microbulbifer sp. AJ-3을 이용한 매생이 효소분해산물의 생리활성 연구)

  • Bae, Jeong-Mi;Cho, Eun-Kyung;Kim, Hye-Youn;Kang, Su-Hee;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.627-633
    • /
    • 2012
  • $Microbulbifer$ sp. AJ-3 was used to acquire the degrading products from $Capsosiphon$ $fulvescens$ (DPCF), which were investigated to determine its physiological activities. A crude enzyme extract from $Microbulbifer$ sp. AJ-3 hydrolyzes polysaccharide substrates such as agar, agarose, alginic acid, fucoidan, laminaran, starch, and chitin. Among them, agarose, laminaran, and alginic acid showed higher activities, especially alginic acid. The antioxidant activity of DPCF was measured by using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and superoxide dismutase (SOD)-like activities and were about 32% and 93% at 2 mg/ml, respectively. In addition, the nitrite-scavenging activity of DPCF was about 82%, 53%, and 12% at pH levels of 1.2, 3.0, and 6.0, respectively. To determine the influence of DPCF on alcohol metabolism, the generating activity of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) was measured. The facilitating rate of ADH activity by DPCF was 130% at 2 mg/ml. The tyrosinase inhibitory activity of DPCF was slightly increased in a dose-dependent manner and was about 28% at 2 mg/ml. These results indicated that the enzymatic products from DPCF have a strong antioxidant, nitrite scavenging, and alcohol metabolizing activity.