• Title/Summary/Keyword: enzymatic activity assay

Search Result 145, Processing Time 0.028 seconds

Inhibition of MMP-2 and MMP-9 activities by solvent-partitioned Sargassum horneri extracts

  • Karadeniz, Fatih;Lee, Seul-Gi;Oh, Jung Hwan;Kim, Jung-Ae;Kong, Chang-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.6
    • /
    • pp.16.1-16.7
    • /
    • 2018
  • Background: Matrix metalloproteinases (MMPs) are linked with several complications such as metastasis of cancer progression, oxidative stress, and hepatic fibrosis. Brown seaweeds are being extensively studied for their bioactive molecule content against cancer progression. In this context, Sargassum horneri was reported to possess various bioactivities including antiviral, antimicrobial, and anti-inflammatory partly due to its phenolic compound content. Methods: In this study, potential of S. horneri was evaluated through anti-MMP effect in HT1080 fibrosarcoma cells. S. horneri crude extract was fractionated with organic solvents, namely, water ($H_2O$), n-buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and n-hexane. The non-toxicity of fraction samples (Sargassum horneri solvent-partitioned extracts (SHEs)) was confirmed by cell-viability assay. SHEs were tested for their ability to inhibit MMP enzymatic activity through gelatin digestion evaluation and cell migration assay. Expressions of MMP-2 and MMP-9 and tissue inhibitors of MMP (TIMPs) were evaluated by reverse transcription and Western blotting. Results: All fractions inhibited the enzymatic activities of MMP-2 and MMP-9 according to gelatin zymography. Except $H_2O$ fraction, fractions hindered the cell migration significantly. All tested fractions suppressed both mRNA and protein levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Conclusion: Overall, current results suggested that S. horneri has potential to be a good source for anti-MMP agents, and further investigations are underway for better understanding of the action mechanism and isolation and elucidation of the bioactive molecules.

Inhibitory Effects of Carex pumila Extracts on MMP-2 and MMP-9 Activities in HT-1080 Cells (HT-1080 세포주에서 좀보리사초 추출물의 MMP-2와 MMP-9 활성 억제효과)

  • Kim, Junse;Kong, Chang-Suk;Seo, Youngwan
    • Ocean and Polar Research
    • /
    • v.40 no.4
    • /
    • pp.249-257
    • /
    • 2018
  • Matrix metalloproteinases (MMPs) are associated with the invasion and metastasis of malignant tumors composed of cancer cells in an increased state of expression. This study evaluates the inhibitory effect of Carex pumila on MMP-2 and MMP-9 activity in phorbol-12-myristate-13-acetate (PMA)-stimulated HT-1080 human fibrosarcoma cells using gelatin zymography, MMPs enzyme-linked immunosorbent assay (ELISA), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay. C. pumila was extracted twice with dichloromethane ($CH_2Cl_2$) and methanol (MeOH). Treatment with $CH_2Cl_2$ extract and MeOH extract in PMA-stimulated HT-1080 cells effectively reduced the production of MMP-2 and 9. Also, the combined crude extracts ($CH_2Cl_2$ and MeOH) significantly inhibited the enzymatic activities and the expression of MMP-2 and MMP-9 in mRNA and protein levels. The combined crude extracts were partitioned between $CH_2Cl_2$ and water. The organic layer was further fractionated with n-hexane, 85% aqueous methanol (85% aq.MeOH) and the aqueous layer was separated into n-butanol and water, successively. Of the fractions, 85% aq.MeOH fraction showed the highest inhibitory activity of MMP-2 and MMP-9 in gelatin zymography and MMP ELISA kit. Furthermore, 85% aq.MeOH fraction most significantly suppressed cell migration. In RT-PCR and Western blot assay, n-butanol and 85% aq.MeOH fractions exerted the greatest inhibition on mRNA and protein expression of MMP-2 and MMP-9, respectively. As a result, C. pumila can be used as a good anti-invasive agent source.

Physicochemical Properties and Biological Activities of Tenebrio molitor Fermented by Several Kinds of Micro-organisms (유용 미생물을 이용한 발효갈색거저리 추출물의 이화학적 특성 및 생리활성 효과)

  • Jang, Sung-Ho;Sim, So-Yeon;Ahn, Hee-Young;Seo, Kwon-Il;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.923-930
    • /
    • 2018
  • In this study, Tenebrio molitor (T. molitor) was fermented with Lactobacillus plantarum JBMI F3 (F3), Lactobacillus plantarum JBMI F5 (F5), Lactobacillus gasseri Ba9 (Ba9), Aspergillus kawachii KCCM 32819 (Ak), Saccharomyces cerevisiae KACC 93023 (Sc), and Bacillus subtilis KACC 91157 (Bs). After fermentation, the fermented products were extracted by water, ethanol, and methanol, and their physicochemical and biological properties were investigated. In a DPPH assay, the water extracts of the fermented products of T. molitor showed high antioxidant ability. Among the water extracts, the fermented product by Bs showed the highest DPPH radical scavenging activity. The total contents of phenolic compounds and flavonoids were highest in the fermented products by Ak and Bs, respectively. Reducing activity was detected the most high activity on ethanol extract of fermented product by Bs. The water extract of the fermented product by Bs exhibited strong enzymatic activity for fibrinogen and starch hydrolysis. Based on the observed physicochemical and biological properties, the fermented products of T. molitor by microorgansims can likely be applied as functional materials in various industries.

Influences of Saliva Substitutes on Salivary Enzymatic Activity (타액대체제가 타액 효소 활성에 미치는 영향)

  • Kho, Hong-Seop;Lee, Sung-Woo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.3
    • /
    • pp.227-235
    • /
    • 2009
  • Many of the protective functions of saliva can be attributed to the biological, physical, structural, and rheological characteristics of salivary glycoproteins. Therefore, the development of ideal saliva substitutes requires understanding of the rheological as well as biological properties of human saliva. In the present study, we investigated the changes of salivary enzymatic activities by saliva substitutes and compared viscosity of saliva substitutes with human saliva. Five kinds of saliva substitutes such as Moi-Stir, Stoppers4, MouthKote, Saliva Orthana, and SNU were used. Lysozyme activity was determined by the turbidimetric method. Peroxidase activity was determined with an NbsSCN assay. $\alpha$-Amylase activity was determined using a chromogenic substrate, 2-chloro-p-nitrophenol linked with maltotriose. The pH values of saliva substitutes were measured and their viscosity values were measured with a cone-and-plate digital viscometer at six different shear rates. Various types of saliva substitutes affected the activities of salivary enzymes in different ways. Stoppers4 enhanced the enzymatic activities of hen egg-white lysozyme, bovine lactoperoxidase (bLP), and $\alpha$-amylase. Saliva Orthana and SNU inhibited bLP activity and enhanced $\alpha$-amylase activity. MouthKote inhibited $\alpha$-amylase activity. Moi-Stir inhibited the enzymatic activities of bLP and $\alpha$-amylase. The pH values were very different according to the types of saliva substitutes. Stoppers4, MouthKote, and Saliva Orthana showed lower values of viscosity at low shear rates and higher values of viscosity at high shear rates compared with unstimulated and stimulated whole saliva. Moi-Stir and SNU displayed much higher values of viscosity than those of natural whole saliva. Collectively, our results indicate that each saliva substitute has its own biological and rheological characteristics. Each saliva substitute affects the enzymatic activity of salivary enzyme and finally oral health in different ways.

Inhibitory Effect of Prunus persica Flesh Extract (PPFE) on Melanogenesis through the Microphthalmia-associated Transcription Factor (MITF)-mediated Pathway

  • Park, Hyen-Joo;Park, Kwang-Kyun;Hwang, Jae-Kwan;Chung, Won-Yoon;Lee, Sang-Kook
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • Novel tyrosinase inhibitors are important for pigmentation in the skin. Following extraction of tyrosinase inhibitors from edible vegetables or fruits, we found that the Prunus persica flesh extract (PPFE) exhibited potential inhibitory activity for melanogenesis. PPFE showed tyrosinase inhibitory activity in an enzymatic assay and PPFE also significantly inhibited the melanin formation in cultured mouse melan-a cells. Moreover, real-time RT-PCR analysis revealed that the inhibition of melanin production by PPFE was closely related to marked suppression of mRNA expression of tyrosinase and tyrosinase-related protein-1 and -2 (TRP-1 and TRP-2) in melan-a cells. Further investigation found that the modulation of tyrosinase expression by PPFE was associated with the transcriptional regulation of the microphthalmia-associated transcription factor (MITF). PPFE inhibited the promoter activity of MITF and suppressed MITF mRNA expression in melan-a cells. These results indicate that PPFE down-regulates melanogenesis-associated gene expression through MITF-mediated transcriptional regulation and these events might be related to the hypopigmentary effects of PPFE.

Evaluation of Cellulolytic Enzyme Production by Indigenous Fungi in Korea

  • Lee, Hanbyul;Lee, Young Min;Heo, Young Mok;Lee, Jaejung;Kim, Jae-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.648-653
    • /
    • 2017
  • The aim of this study was to select various fungal strains indigenous to Korea that have the potential to produce cellulases, including filter paper activity (FPase), $endo-{\beta}$-1,4-glucanase (EG), and ${\beta}-glucosidase$ (BGL). Among the 25 species of Ascomycetes and the 32 species of Basidiomycetes tested in this study, the Bjerkandera adusta KUC10565, Heterobasidion orientale KUC10556, Hyphoderma praetermissum KUC10609, and Trichoderma harzianum KUC1716 all exhibited remarkably high FPase activity. In addition, the T. harzianum KUC1716 showed high levels of EG and BGL activity. This strain has been selected for further study because of their enzymatic potential.

Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity

  • Jaehong Park;Dong-Hyun Lee
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.618-623
    • /
    • 2023
  • Most cancer cells utilize glucose at a high rate to produce energy and precursors for the biosynthesis of macromolecules such as lipids, proteins, and nucleic acids. This phenomenon is called the Warburg effect or aerobic glycolysis- this distinct characteristic is an attractive target for developing anticancer drugs. Here, we found that Phosphofructokinase-1 (PFK-1) is a substrate of the Protein Phosphatase 4 catalytic subunit (PP4C)/PP4 regulatory subunit 1 (PP4R1) complex by using immunoprecipitation and in vitro assay. While manipulation of PP4C/PP4R1 does not have a critical impact on PFK-1 expression, the absence of the PP4C/PP4R1 complex increases PFK-1 activity. Although PP4C depletion or overexpression does not cause a dramatic change in the overall glycolytic rate, PP4R1 depletion induces a considerable increase in both basal and compensatory glycolytic rates, as well as the oxygen consumption rate, indicating oxidative phosphorylation. Collectively, the PP4C/PP4R1 complex regulates PFK-1 activity by reversing its phosphorylation and is a promising candidate for treating glycolytic disorders and cancers. Targeting PP4R1 could be a more efficient and safer strategy to avoid pleiotropic effects than targeting PP4C directly.

Cotton GhKCH2, a Plant-specific Kinesin, is Low-affinitive and Nucleotide-independent as Binding to Microtubule

  • Xu, Tao;Sun, Xuewei;Jiang, Shiling;Ren, Dongtao;Liu, Guoqin
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.723-730
    • /
    • 2007
  • Kinesin is an ATP-driven microtubule motor protein that plays important roles in control of microtubule dynamics, intracellular transport, cell division and signal transduction. The kinesin superfamily is composed of numerous members that are classified into 14 subfamilies. Animal kinesins have been well characterized. In contrast, plant kinesins have not yet to be characterized adequately. Here, a novel plant-specific kinesin gene, GhKCH2, has been cloned from cotton (Gossypium hirsutum) fibers and biochemically identified by prokaryotic expression, affinity purification, ATPase activity assay and microtubule-binding analysis. The putative motor domain of GhKCH2, $M_{396-734}$ corresponding to amino acids Q396-N734 was fused with 6$\times$His-tag, soluble-expressed in E. coli and affinity-purified in a large amount. The biochemical analysis demonstrated that the basal ATPase activity of $M_{396-734}$ is not activated by $Ca^{2+}$, but stimulated 30-fold max by microtubules. The enzymatic activation is microtubule-concentration-dependent, and the concentration of microtubules that corresponds to half-maximum activation was about 11 ${\mu}M$, much higher than that of other kinesins reported. The cosedimentation assay indicated that $M_{396-734}$ could bind to microtubules in vitro whenever the nucleotide AMP-PNP is present or absent. As a plant-specific microtubule-dependent kinesin with a lower microtubule-affinity and a nucleotide-independent microtubule-binding ability, cotton GhKCH2 might be involved in the function of microtubules during the deposition of cellulose microfibrils in fibers or the formation of cell wall.

Cloning and Expression of Isocitrate Lyase, a Key Enzyme of the Glyoxylate Cycle, of Candida albicans for Development of Antifungal Drugs

  • SHIN DONG-SUN;KIM SANGHEE;YANG HYEONG-CHEOL;OH KI-BONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.652-655
    • /
    • 2005
  • This paper describes the development of an enzymatic assay system for the identification of inhibitors of isocitrate lyase (ICL), one of the key enzymes of the glyoxylate cycle that is considered as a new target for antifungal drugs. A 1.6 kb DNA fragment encoding the isocitrate lyase from Candida albicans ATCC10231 was amplified by PCR, cloned into a vector providing His-Patch-thioredoxin-tag at the N-terminus, expressed in Escherichia coli, and purified by metal chelate affinity chromatography. The molecular mass of the purified ICL was approximately 62 kDa, as determined by SDS-PAGE, and the enzyme activity was directly proportional to incubation time and enzyme concentration. The effects of itaconate-related compounds on ICL activity were also investigated. Among them, itaconic acid, 3-nitropropionate, and oxalate had strong inhibitory activities with $IC_{50}$ values of 5.8, 5.4 and $8.6\;{mu}g/ml$, respectively. These inhibitors also exhibited antifungal activity on YPD agar media containing acetate as a sole carbon source, albeit at high concentration. The results indicate that the C. albicans ICL may be a regulatory enzyme playing a crucial role in fungal growth and is a prime target for antifungal agents.

Real-time Fluorescence Assay of DNA Polymerase Using a Graphene Oxide Platform (산화 그래핀 플랫폼을 이용한 DNA 중합효소의 실시간 형광에세이)

  • Gang, Jongback
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.4
    • /
    • pp.456-461
    • /
    • 2013
  • Using the different adsorption properties of ssDNA and dsDNA to GO, this study used a real time and efficient fluorescence assay to detect the enzymatic activity of the Klenow fragment with the adsorbed DNA to GO. Results showed that adsorption of fluorescein-tagged ssDNA to GO resulted in fluorescence quenching and DNA was released from GO by adding complementary DNA. In addition, fluorescence restoration was increased through a polymerization reaction by the Klenow fragment in the presence of a fluorescein-attached template, GO, and primer. Gel electrophoresis was conducted to confirm the hybridization and DNA polymerization reactions on GO.