• Title/Summary/Keyword: environmentally-friendly sanitizer

Search Result 3, Processing Time 0.023 seconds

Microbial Safety and Quality of Fresh Carrot Juice Prepared with Different Environmentally-Friendly Washing Methods (친환경 세척제의 처리 방법을 달리하여 착즙한 당근 주스의 미생물 안전성 및 품질)

  • Lim, Sang-Wook;Choe, Da-Jeong;Kang, Min-Jung;Kim, Jong-Hyun;Kim, Myo-Jeong;Kim, Min-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1225-1233
    • /
    • 2017
  • The aim of this study was to evaluate the microbial inhibitory activity and physicochemical quality of fresh carrot juice prepared with different environmentally-friendly washing methods during low temperature storage. Individual and combined treatments with sodium bicarbonate (baking soda, $NaHCO_3$) and citric acid were applied to carrots for 10 min. Tap water and 50 ppm of sodium hypochlorite (NaOCl) were used as the control. Combined treatment of 1% $NaHCO_3$ and 1% citric acid significantly reduced total aerobic counts and coliforms. In addition, combined treatment of 1% $NaHCO_3$ and 1% citric acid inhibited microbial growth for 7 days at $4^{\circ}C$ and $10^{\circ}C$ in a shelf-life study. There were no significant differences among the sanitizers in terms of $^{\circ}Brix$, acidity, pH, and color. Changes in physicochemical quality were not significantly different by sanitizer but were affected by storage temperature. These results indicate that washing with combined treatment of 1% $NaHCO_3$ and 1% citric acid is an effective method to inhibit the microbial population and maintain physicochemical quality. Therefore, combined treatment of 1% $NaHCO_3$ and 1% citric acid can be effectively used to sanitize and prepare carrot juice without affecting other properties.

Effects of Dipping Chicken Breast Meat Inoculated with Listeria monocytogenes in Lyophilized Scallion, Garlic, and Kiwi Extracts on Its Physicochemical Quality

  • Kim, Hye-Jin;Sujiwo, Joko;Kim, Hee-Jin;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.39 no.3
    • /
    • pp.418-429
    • /
    • 2019
  • This study was conducted to evaluate the antioxidant and antimicrobial activities of lyophilized extracts of scallions (Allium fistulosum L., SLE), garlic (Allium sativum, GLE), and gold kiwi (Actinidia chinensis, GKE) and their effects on the quality of chicken breast meat inoculated with L. monocytogenes during storage for 9 days at $4^{\circ}C$. The lowest minimum inhibitory concentration and minimum bactericidal concentration (25 and 100 mg/mL, respectively) against L. monocytogenes were observed for SLE and GLE, respectively. GKE had the lowest half-maximal inhibitory concentration ($IC_{50}$) for 2,2′-azinobis-3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activity (5.06 mg/mL). The pH values of meat inoculated with L. monocytogenes and dipped in 1% SLE (LSLE), 1% GLE (LGLE), or 1% GKE (LGKE) were lower than that of the control on day 3 of storage (p<0.05). The initial population of L. monocytogenes in meat was 4.95-5.01 Log CFU/g. However, the population in the LSLE (5.73 Log CFU/g) was lower than that in the control (6.23 Log CFU/g) on day 5 (p<0.05). The volatile basic nitrogen value of the LSLE (19.90 mg/100 g) was lower than that of the control (24.38 mg/100 g) on day 7 (p<0.05). Moreover, treatment with SLE resulted in the maintenance of meat quality and reduced the population of L. monocytogenes on the meat. Thus, SLE may be used as an alternative natural and environmentally friendly sanitizer for reducing L. monocytogenes contamination in the chicken meat industry.

The Effects of Calcinated Calcium Solution Washing and Heat Treatment on the Storage Quality and Microbial Growth of Fresh-cut Broccoli (신선편이 브로콜리의 품질과 미생물 성장에 영향을 주는 소성칼슘 용액 세척 및 열처리 효과)

  • Kim, Ji Gang;Nimitkeatkai, Hataitip;Choi, Ji Woen;Lee, Sang Gyu
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.411-418
    • /
    • 2012
  • This study was conducted to investigate the effect of calcinated calcium (CC) alone or combination with heat treatment on storage quality and microbial growth in fresh-cut broccoli. Fresh broccoli samples were cut into small pieces and washed in normal tap water (TW), $50{\mu}L{\cdot}L^{-1}$ chlorinated water (pH 6.5), $1.5g{\cdot}L^{-1}$ CC, heat treatment in TW at $45^{\circ}C$, and CC dissolved in TW at $45^{\circ}C$ for 2 minutes separately. Samples were then packaged in $50{\mu}m$ polyethylene bags and stored at $5^{\circ}C$. Results revealed that like $50{\mu}L{\cdot}L^{-1}$ chlorine, washing in CC at normal water temperature was effective in reducing microbial population in fresh-cut broccoli samples. Washing with CC combined with heat treatment increased an electrical conductivity of fresh-cut broccoli. Combined heat treatments with TW and CC reduced aerobic plate count on fresh-cut broccoli, only in initial period of storage. But, later on heat treatment induced injury of fresh-cut broccoli resulting more microbial population compared to non heat treatment. However, samples treated with CC alone had good quality with low off-odor at the end of storage. Results suggest that CC, an environment-friendly sanitizer could be an alternative to chlorinated water for washing of fresh-cut broccoli without affecting sensorial quality.