• Title/Summary/Keyword: environmentally-friendly cultivation

Search Result 69, Processing Time 0.03 seconds

The analysis of value chains for the chestnut industry in Chungcheongnam-do

  • Lee, Bo-Hwi;Ji, Dong-Hyun;Kang, Kil-Nam;Kim, Se-Bin
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.298-307
    • /
    • 2018
  • The aim of this study was to enhance the value of the chestnut industry by analyzing the value chain structure. Based on the value chain theory, it is divided into primary activities and support activities. Thus, in total, 27 subjects from Gongju, Buyeo, and Cheongyang were interviewed and self-administered questionnaire. Regarding the value chain structure of the chestnut industry, the primary activities consisted of production followed by cultivation and storing, sorting and packaging, transportation and marketing sales. The support activities were divided into production infrastructure, policy, R&D, and systematization. The primary activities are able to maximize profits through cost reductions. The production was divided into general and environmentally friendly cultivation. Depending on the labor force, it is family-centered labor. However, the installation of harvest nets depends on a hired labor force (40 - 60%) such that it would be necessary to have a mechanized harvest to replace the manpower for the cost reduction. Transportation, marketing sales, and backdoor selling (38.1%) were higher than the existing channels (31.0%) using the National Agricultural Cooperative Federation. The enhancement of value could be created by maximizing profits through the reinforcement of the links between each subject. The production showed strong connections with cultivation/storing, sorting/packing, and backdoor selling and the National Forestry Cooperative Federation. The processing stage is a very simple structure, it would be necessary to have R&D and to support promotions, infrastructure, machines, and sales increases, which should be expanded by connections with other industries like the food industry.

Effect of the Adding of Flammulina velutipes Cultivation Media Wastes into Chicken Feed on the Meat Quality and Production Cost of Broiler (팽이버섯 탈병배지의 사료첨가가 육계의 질 및 생산비용에 미치는 영향)

  • Cheong, Jong-Chun;Jhune, Chang-Sung;Kim, Seung-Hwan;Jang, Kab-Yeul;Park, Jeong-Sik;Na, Jae-Cheon;Chun, Min-Hyun
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.29-33
    • /
    • 2006
  • To develop environmentally friendly bio-materials for animal feed, the potential of using mushroom was studied. Adding Flammulina velutipes cultivation media wastes (FCMW) has shown beneficial effects on broiler meat quality and production cost because of the $10{\sim}20%$ saving in feeds for broiler chicken. However, differences proximate composition between FCMW and commercial broiler chicken feed were observed. FCMW had higher contents of crude fat (6.2%) and crude fiber (13.7%) than the commercial broiler feed which had crude fat and crude fiber of 4.0%, and 6.0%, respectively. But FCMW crude protein contents were lower (12.2%) than those in commercial broiler (19.0%). Adding $5{\sim}10%$ of FCMW to broiler chicken feed increased amino acid concentration upto $33{\sim}38%$ in the meat, but adding more than 20% decreased amino acid concentration.

Effect of Weed Managements after False Seedbed on Weed Occurrence and Growth of Organic Chinese Cabbage Growth (가묘상을 이용한 잡초관리가 잡초발생과 유기농 배추의 생장에 미치는 영향)

  • Cho, Jung-Lai;Lee, Byung-Mo;An, Nan-Hee;Ok, Jung-Hun;Shin, Jae-Hun;Choi, Hyun-Sug
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.761-771
    • /
    • 2014
  • The study was conducted to evaluate effects of weed managements after false seedbed on the weed control and growth of spring and fall cabbages (Brassica oleracea L.) in an organic upland in 2013. Weed managements included rake, flame, PE mulch, and none treatment. The weed occurrence was not effectively controlled by rake treatment but controlled by flame treatment in spring and fall cultivation. PE mulch plots had 30% of tip-burn in spring cultivation. Weed managements after false seedbed were similar fresh weight, leaf number, and cabbage yield to the conventional PE mulch. Head of cabbage was the lowest on the none treatment. Fall cultivation reduced the weed density and increased yield of cabbage compared to those of spring in all treatment plots. In conclusion, rake or flame treatment after false seedbed markedly decreased weed occurrence, which was expected to use for management of environmentally-friendly vegetation as a substitute of PE mulch.

Biological control of powdery mildew in Korean melons through a treatment with a culture of Bacillus species

  • Lee, Sang Gil;Jeon, Nak Beom;Park, Myung Soo;Yun, Hae Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1011-1020
    • /
    • 2020
  • Efficient management systems of facilities make it possible to manage environmental conditions properly, such as the temperature, humidity and light source required for the best growth of the crops, as well as for the mass production of fruit and vegetables with high quality every year through an advanced and protected cultivation system. Powdery mildew is a type of chronic disease that is difficult to control during the production of Korean melons under a protected cultivation system, the use of which is increasing in production areas in Korea. Two Bacillus strains isolated from soil samples showed antagonistic activities against several pathogens, specifically Botrytis cinerea, Colletotrichum gloeosporioides, and Fusarium oxysporum f.sp. melonis; they were identified as Bacillus velezensis M2 and B. amyloliquefaciens M3 in a molecular biological test of the nucleotide sequences of gyrase subunit A (gyrA). The treatment was given three times at intervals of five days with 400-fold diluted cultures of B. velezensis M2 and B. amyloliquefaciens M3. This led to the inhibition of the incidence of powdery mildew disease in Korean melon leaves, which resulted in effective control efficiency against the incidence of powdery mildew disease with control values of 87% and 65%, respectively. Cultures of antagonistic microbes tested in this study can be used to increase the efficiency as part of an environmentally friendly management scheme to prevent powdery mildew disease during the protected cultivation of crops, including Korean melons.

Performance of Mixed Cropping of Barley and Hairy Vetch as Green Manure Crops for Following Corn Production

  • Shim, Kang Bo;Kim, Min Tae;Kim, Sung Gook;Jung, Kun Ho;Jeon, Weon Tai;Shin, Su Hyun;Lee, Jae Un;Lee, Jong Ki;Kwon, Young Up
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.160-165
    • /
    • 2018
  • BACKGROUND: Mixed cropping of legume and grass was effective system in view point of providing organic matter and nitrogen or reducing the nitrogen starvation of following crop. The relation of the change of N and P constituents depending on the cropping types and those effects on the growth and nutrient uptake of the following crop were observed. METHODS AND RESULTS: Three cropping types, hairy vetch mono cropping, barley mono cropping, and mixed cropping of hairy vetch and barley were applied. Soil properties, growth characteristics, and nitrogen production of green manure crops were observed. In additions, the effect of cropping types on the growth pattern of corn as the following crop was observed. In the mixed cropping system, creeping type hairy vetch climbed to the erect type barely for light utilization resulting in improvement of light interception rate and higher LAI (Leaf Area Index) than in mono cropping. Mixed cropping showed higher biomass production and soil nitrogen availability among the cropping types, indicating relatively much more nutrient supply and higher yield production of following crop. CONCLUSION: Mixed cropping showed relatively higher LAI (dry matter) mainly because of intense competition for light utilization usually after flowering stage. Mixed cropping also showed relatively higher yield of corn, the following crop rather than other types, mainly due to the more biomass production potential and higher N and P production ability. Therefore, mixed cropping was adaptable method to reduce or replace chemical fertilizer application for environmentally-friendly agriculture.

Comparison of Rice Properties Between Rice Grown Under Conventional Farming and One Grown Under Eco-Friendly Farming Using Hairy Vetch (친환경 무농약 재배와 관행 재배 쌀의 특성비교)

  • Lee, Seung-Hyun;Kim, Min-Young;Kim, Han-Yong;Ko, Sang-Hoon;Shin, Mal-Shick
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.11
    • /
    • pp.1684-1690
    • /
    • 2010
  • The properties of non-waxy rice, Dongjin 1, cultivated with conventional farming (CF) and environmentally-harmonized farming (EHF) using hairy vetch were compared to determine rice water absorption, physicochemical and pasting properties, antioxidant activities of brown and white rice, and a sensory evaluation of cooked white rice was carried out. EHF was treated with green manure crops such as hairy vetch and chitinase, which produce microorganism culture solution. CF was applied with seed disinfection treatments, fertilizer herbicides, and agricultural chemicals for the control of pests and diseases. The absorption level of EHF rice was higher than that of CF rice grain, regardless of the cultivation methods used. The ash and crude lipid contents were higher, but protein and dietary fiber contents were lower in the CF rice than in the EHF rice. The total starch content, water binding capacity, and swelling power of white rice were higher than those of brown rice, regardless of the cultivation methods used. The DPPH's antioxidant activity was shown as follows: EHF brown rice, EHF white rice and CF rice, in a decreasing order. The initial pasting temperature of EHF rice was lower than that of CF rice, but the peak, cold, and breakdown viscosities exhibited reverse trends. The sensory evaluation showed that the cooked white rice cultivated with EHF was not significantly different from that cultivated with CF (p<0.05). The overall preference of cooked rice did not show significant differences between the two cultivation methods (p<0.05).

Distribution of Soil Fertility in Paddy Fields as Affected by Cultivation Methods and Topographical Regions (경작지대 및 재배방법에 따른 논토양의 비옥도 분포)

  • Kim, Dong-Jin;Kang, Da-Seul;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.595-604
    • /
    • 2015
  • Soil chemical properties in paddy fields were found to be varied depending upon different cultivation methods such as environmentally-friendly, conventional, and two-crop farming systems and different topographical regions, namely plain, middle mountainous, and reclaimed land regions. Overall soil pH was found to be in optimal range (pH 5.5~6.5) for rice cultivation, except with conventional cultivation fields of the reclaimed lands in Jeonnam province. Electrical conductivity (EC) was relatively higher in the two-crop cultivation fields than in others. However, the concentrations of available phosphate as $P_2O_5$ were exceptionally higher in the two-crop farming fields, thus in submerged paddy condition the phosphate could be released into streams and rivers. Soil organic matter (SOM) contents were mostly in optimal range ($25{\sim}30g\;kg^{-1}$) for paddy field in Jeonbuk province, but in Jeonnam province they were slightly higher values of the range. The concentrations of available silicate ($SiO_2$) were mostly depended on the cultivation methods and the region, but some of paddy fields contained extremely high $SiO_2$ concentration. Statistical relationships among the soil chemical properties showed as follows: Correlations between EC values and exchangeable cation concentrations, between SOM contents and CEC values, and between available $SiO_2$ concentrations and pH, EC, exchangeable cations, and CEC values were positively significant, whereas total nitrogen concentrations were significantly negatively correlated with the concentrations of exchangeable K and Mg. These results might be very useful to establish benchmark paddy fields contained with certain levels of soil fertility.

Effects of Global Warming on the Distribution of Overwintering Pomacea canaliculata (Gastropoda: Ampullariidae) in Korea

  • Bae, Mi-Jung;Kwon, Yong-Su;Park, Young-Seuk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.453-458
    • /
    • 2012
  • The golden apple snail, Pomacea canaliculata, is a freshwater snail native to tropical and subtropical South America. The species was introduced into Korea as a human food source in 1983 and was first applied as a weed control agent for the paddy fields in 1992. As the snail is well known as an environmentally friendly biological control agent for weeds, the area of cultivation in which the golden apple snail is used for biological control has been enlarged substantially each year. Currently, the species is observed in open water courses. It is possible that the snail may overwinter in these open water courses and may become a serious pest, as is already the case in many Asian countries. In this study, we determined the status of the overwintering golden apple snail based on a literature survey and investigated the potential distribution area of the snail, as a result from global warming in Korea. The potential distribution area of the overwintering golden apple snail would be enlarged under the influence of global warming; ranging from 45.5% of South Korea's land area in the 2020s to 88.4% in the 2080s.

Research and Development of Closed Ecological and Biotechnical Systems in Live Stock

  • Chmil, A.;Chervinsky, L.;Oliinyk, Y.
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.6
    • /
    • pp.17-21
    • /
    • 2019
  • This article addresses issues related to environmental pollution.Particular attention is paid to the prevention of environmental pollution by livestock waste, which prompted the creation of closed ecological and biotechnical systems as environmentally closed production structures that can fit into the equilibrium system of the environment with minimal damage to it. An energy-saving and environmental protection technology for the processing and disposal of livestock waste with a maximum coefficient of energy transfer to livestock products has been developed, which consists in a combined treatment of waste in three stages, by transferring waste from one technological module to another, which makes it possible to completely utilize mineral substances in waste. The focus is on vermicultivation, microalgae cultivation and anaerobic fermentation in a bioenergy plant. To increase the productivity of growing microalgae, the authors proposed a deep type cultivator with submerged movable light sources.The technological parameters of the bioenergy installation for waste treatment are determined. An energy-saving and environmental-friendly technology has been developed for processing The main contribution of the study is the development of energy-saving and environmental technology for the processing and disposal of livestock waste with a maximum coefficient of energy transfer to livestock products.

Production of Lactic Acid by Lactic Acid Bacteria Isolated from Shellfish (패류로부터 분리된 젖산균에 의한 젖산의 생산)

  • Kang, Chang-Ho;Jung, Ho Geon;Koo, Ja-Ryong;So, Jae-Seong
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.161-165
    • /
    • 2015
  • Lactic acid and its derivatives are widely used in the food, pharmaceutical, and cosmetic industries. It is also a major raw material for the production of poly-lactic acid (PLA), a biodegradable and environmentally friendly polymer and a possible alternative to synthetic plastics derived from petroleum. For PLA production by new strains of lactic acid bacteria (LAB), we screened LAB isolates from shellfish. A total of 51 LAB were isolated from 7 types of shellfishes. Lactic acid production of individual isolates was examined using high-performance liquid chromatography using a Chiralpak MA column and an ultraviolet detector. Lactobacillus plantarum T-3 was selected as the most stress-resistant strain, with minimal inhibition concentrations of 1.2 M NaCl, 15% ethanol, and 0.0020% hydrogen peroxide. In a 1 L fermentation experiment, $\small{D}$-lactic acid production of 19.91 g/L fermentation broth was achieved after 9 h cultivation, whereas the maximum production of total lactic acid was 41.37 g/L at 24 h.