• Title/Summary/Keyword: environmentally friendly harvesting

Search Result 5, Processing Time 0.024 seconds

Improvement of a Tree Cutting Permit System with Respect to Timber Logger's Consciousness (벌채업 관련자의 의식 조사를 통한 현행 벌채제도의 개선)

  • Park, Kyung-Seok;Lee, Seong-Youn;Choi, In-Hwa;Kim, Hyun-Sig;Ahn, Young-Sang;An, Ki-Wan
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.710-721
    • /
    • 2012
  • This study is to find out the search of the desirable tree cutting permit system by investigating and analyzing timber logger's consciousness in Korea. A sample group, including 64 officers in 5 Regional Forest Services and 27 National Forest Stations, 161 local government of 322 officers and team leaders with cutting permits, and 308 tree loggers was surveyed. The survey results showed that the ongoing harvest year plan for national, public and private-type forests, which was applied differently, could be integrated as 3.73 points, which was not significant among the groups. A total of 95.1% of the national forest officers stated that the environmentally friendly harvesting system could be improved and that it is exempted from bad broadleaf trees and renewal of forest type (4.14 points). An environmentally friendly harvesting system including the type of forest and location status (slide, soil, etc) is needed (3.87 points). Additionally, the round timber purchased from tree loggers managed in 2009 was about 10.6% of the domestic timber supply ($3,176,000m^3$) and round timber sales were about 50.1%. A total of 72% of the loggers suggested that a environmentally friendly harvesting system is needed (4.11 points). These results show that a new system for harvesting timber is needed to replace the current environmentally unfriendly harvesting system, and that tree loggers should be registered for management.

Flocculation Effect of Alkaline Electrolyzed Water (AEW) on Harvesting of Marine Microalga Tetraselmis sp.

  • Lee, Su-Jin;Choi, Woo-Seok;Park, Gun-Hoo;Kim, Tae-Ho;Oh, Chulhong;Heo, Soo-Jin;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.432-438
    • /
    • 2018
  • Microalgae hold promise as a renewable energy source for the production of biofuel, as they can convert light energy into chemical energy through photosynthesis. However, cost-efficient harvest of microalgae remains a major challenge to commercial-scale algal biofuel production. We first investigated the potential of electrolytic water as a flocculant for harvesting Tetraselmis sp. Alkaline electrolyzed water (AEW) is produced at the cathode through water electrolysis. It contains mineral ions such as $Na^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ that can act as flocculants. The flocculation activity with AEW was evaluated via culture density, AEW concentration, medium pH, settling time, and ionic strength analyses. The flocculation efficiency was 88.7% at 20% AEW (pH 8, 10 min) with a biomass concentration of 2 g/l. The initial biomass concentration and medium pH had significant influences on the flocculation activity of AEW. A viability test of flocculated microalgal cells was conducted using Evans blue stain, and the cells appeared intact. Furthermore, the growth rate of Tetraselmis sp. in recycled flocculation medium was similar to the growth rate in fresh F/2 medium. Our results suggested that AEW flocculation could be a very useful and affordable methodology for fresh biomass harvesting with environmentally friendly easy operation in part of the algal biofuel production process.

Application of Layer-by-Layer Assembly in Triboelectric Energy Harvesting (마찰대전 기반의 에너지 하베스팅에서 다층박막적층법의 응용)

  • Habtamu Gebeyehu, Menge;Yong Tae, Park
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.371-377
    • /
    • 2022
  • Triboelectric nanogenerator (TENG) devices have generated a lot of interest in recent decades. TENG technology, which is one of the technologies for harvesting mechanical energy among the energy wasted in the environment, is obtained by the dual effect of electrostatic induction and triboelectric charging. Recently, a multilayer thin film stacking method (or layer-by-layer (LbL) self-assembly technique) is being considered as a method to improve the performance of TENG and apply it to new fields. This LbL assembly technology can not only improve the performance of TENG and successfully overcome the thickness problem in applications, but also present an inexpensive, environmentally friendly process and be used for large-scale and mass production. In this review, recent studies in the accomplishment of LbL-based materials for TENG devices are reviewed, and the potential for energy harvesting devices reviewed so far is checked. The advantages of the TENG device fabricated by applying the LbL technology are discussed, and finally, the direction and perspective of this fabrication technology for the implementation of various ultra-thin TENGs are briefly presented.

Optimization and improvement about DSSCs efficiency as thickness of TiO2 photoelectrode with Al back-reflector

  • Lee, Yong-Min;Hwang, Gi-Hwan;Seo, Hyeon-Jin;Choe, Hyeon-Ji;Lee, Yul-Hui;Kim, Dong-In;Nam, Sang-Hun;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.243.1-243.1
    • /
    • 2015
  • To replace the based on silicon solar cells, the third generation solar cells, Dye-sensitized solar cells (DSSCs), is low fabrication than silicon solar cells, environmentally friendly and can be applied to various field. For this reason, the DSSCs have been continuously researched. But DSSCs have one drawback that is the low power conversion efficiency (PCE) than silicon solar cells. To solve the problem, we used the backr-eflector the Al foil that can be easily obtained from the surrounding in order to improve the efficiency of the DSSCs. Easily detachable Al foil back-reflector increases the photocurrent by enhancing the harvesting light because the discarded light is reused. It also leads to enhance the power conversion efficiency (PCE). In addition, we compared with the efficiency of the DSSCs that is applied and does not be applied with back-reflector according to the thickness of the TiO2 photoelectrode. When the back-reflector is applied to DSSCs, the photocurrent is increased. It leads to affect the efficiency. We used to solar simulator and Electrochemical Impedance Spectroscopy (EIS) to confirm the PCE and resistance. The DSSCs were also measured by External Quantum effect (EQE). At the same time, FE-SEM and XRD were used to confirm the thickness of layer and crystal structural of photoelectrode.

  • PDF

Effect of a Mixture of Extracts from Residues of Onion Left after Onion Harvesting and Purslane (Portulaca oleracea) on Productivity and Quality Characteristics of Organic Onions (양파 수확 후 잔재물과 쇠비름 추출물이 유기농 양파의 수확량 및 품질 특성에 미치는 영향)

  • Kim, Tae-Won;Jeon, Byeong-Gyun;Lee, Sung-Ho
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1430-1436
    • /
    • 2017
  • This study assessed the effects of treatment with sap extract from onion residues postharvest and purslane on the quality and quantity of organic onions. At the bending stage, onions treated with the sap extract showed vigorous growth, with higher plant heights, more leaves, and longer sheath lengths than untreated onions. The onion yield was significantly increased when the plant was treated with extracted sap as compared with that of untreated plants (p<0.05). The bulb weight distribution of onions in the mixed onion and purslane treatment was also significantly increased (~300 g) as compared with that of the other treatment (p<0.05). Except for CaO and S, the mineral content of the onions produced from plants treated with the onion and purslane extract mixture was higher than those of onions in the other treatment. The hardness of onions produced from plants treated with the onion and purslane extract was significantly increased (8% and 20%, respectively) as compared with that of onions produced from plants treated with the onion extract only or no treatment (p<0.05). However, there was no significant difference in the sugar contents of the onions produced from extract-treated and nonextract-treated plants. Postharvest, the content of inorganic components (phosphate, calcium, sulfuric acid, and manganese) was higher in soil treated with the onion extract than in soil treated with the onion and purslane extract and non-treated soil. It can be concluded that residues left after onion harvests and purslane extract can be used as natural and environmentally friendly materials for the cultivation of organic onions.