• Title/Summary/Keyword: environmental toxicity

Search Result 2,075, Processing Time 0.035 seconds

Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems

  • Chatterjee, Nivedita;Yang, Ji Su;Park, Kwangsik;Oh, Seung Min;Park, Jeonggue;Choi, Jinhee
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.7.1-7.7
    • /
    • 2015
  • Objectives The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nanano-materials (GFNs) in alternative in vitro and in vivo toxicity testing models. Methods The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [$NH_2$]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. Results In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine > $NH_2$ > COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. Conclusions The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.

A Study on the Improvement Plan of Toxic Substance Designation Criterion Based on GHS Hazards (GHS 유해성을 기반으로 한 유독물질 지정체계 개선방안 연구)

  • Kim, Hyo-dong;Park, Kyo-shik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.3
    • /
    • pp.209-220
    • /
    • 2022
  • Objectives: This study was performed to suggest how to re-establish criterion for toxic substances under the Chemical Control Act (CCA) in South Korea by comparing the GHS (Globally Harmonized System of Classification and Labeling of Chemicals) score and toxic properties. Methods: Toxic substances were classified into seven groups (Acute toxicity (1A), Chronic toxicity (2C), Environmental hazards (3E), Acute toxicity & chronic toxicity (4AC), Chronic toxicity & environmental hazards (5CE), Acute toxicity & environmental hazards (6AE), and Acute toxicity & chronic toxicity & environmental hazards (7ACE)) according to their toxic properties. The GHS score was calculated to sum up five toxicity indicators (health acute toxicity, health repeated toxicity, carcinogenicity, health other chronic toxicity and environmental hazards). Results: The GHS score of 7ACE was higher by 7 times that of 1A. 1A is the only group which has lower than the total GHS score. The highest score was 47, for sodium chromate (CAS no. 7775-11-3), which belongs to group 7ACE. This is classified as acute toxicity, carcinogenicity, germ cell mutagenicity, reproductive toxicity, and acute and chronic environmental hazard. On the other hand, the lowest score was 2.75, which was assigned to 177 chemicals belonging to group 1A. When the health acute toxicity indicator was omitted from the toxic criterion, toxic substances could be divided into the sub-groups 'human chronic hazards group' (HCG) and 'environmental hazards group' (EG) according to their GHS score and properties. Conclusions: The proposed criterion for toxic substances is to establish sub-groups defined as HCG and EG for separate control and that the 1A group be moved to substances requiring preparation for accidents under the CCA.

Ecotoxicity Test of Wastewater by a Battery of Bioassay and Toxicity Identification Evaluation (다양한 시험생물종을 이용한 산업폐수 생태독성 평가 및 원인물질 탐색)

  • Ryu, Tae-Kwon;Cho, Jae-Gu;Kim, Kyung-Tae;Yang, Chang-Yong;Joung, Ki-Eun;Yoon, Jun-Heon;Choi, Kyung-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Toxicity identification and quantification are important factors to evaluate the effect of industrial effluent on the aquatic environment. In order to measure the potential and real toxicity of mixed chemicals in the effluents, the biological method (i.e., WET test) should be used as well as chemical analysis method. In this study, we conducted WET test for various kinds of industrial effluents using aquatic organisms such as water flea (Daphnia magna), algae (Pseudokirchneriella subcapitata), fish (Oryzias latipes, Danio rerio), and microorganism (Vibrio fisheri). In addition, we carried out chemical analysis and TIE (Toxicity Identification Evaluation) for effluents in order to identify the substances causing toxicity. Among the 30 kinds of wastewater, S13 showed the highest eco-toxicity and $Ca^{2+}$ and $Cl^-$ ion were suspected as major compounds causing toxicity for aquatic organisms. In order to confirm these suspected compounds, various confirmation procedures need to be carried out.

Toxicity Assessment of PFOA and PFOS Using Freshwater Flea Hyalella azteca (담수산 물벼룩인 Moina macrocopa를 이용한 과불화화합물 PFOA와 PFOS의 독성평가)

  • Lee, Chul-Woo;Kim, Hyun-Mi;Choi, Kyung-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.271-277
    • /
    • 2007
  • Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are fully flurorinated organic compounds which are highly persistent in environment and accumulated in organism. These chemicals are released to the environment at their manufacture, during their use in industrial and consumer applications and from disposal after their use. The purpose of this study was to determine the effects of PFOA and PFOS on the freshwater flea (Moina macrocopa). Acute toxicity test and chronic toxicity test were performed for 2 days and 10 days, respectively. Acute toxicity was assessed on the basis of mortality, while chronic toxicity was assessed by fecundity as well as mortality. The acute toxicity studies on PFOA and PFOS showed that the values of $LC_{50}$ were $73.9\;mg/L\;and\;27.7\;mg/L$ respectively. In the chronic toxicity test, fecundity was reduced significantly at 24.1 mg/L of PFOA and 9.3 mg/L of PFOS, respectively. Conclusively, the results of this work suggest that Moina macrocopa could be a suitable model organism for screening and assessing of environmental pollutants in water.

Comparative Study on Acute Toxicity of Treated Effluent Containing Salt using Daphnia magna and Vibrio fischeri (염 함유 폐수처리수에 대한 Daphnia magna 및 Vibrio fischeri 급성독성 비교연구)

  • Kim, Jongmin;Shin, Kisik;Yu, Soonju;Lee, Jungseo;Kim, Woongki
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.453-459
    • /
    • 2015
  • This paper aims to evaluate the results of acute toxicity testing with Daphnia mag$Na^+$ and Vibrio fischeri and characteristics of ionic substance of treated effluent which contained salt. Acute toxicity with Daphnia mag$Na^+$ and Vibrio fischeri and salinity of 19 samples (4 business categories) were a$Na^+$lysed. Salinity of effluent could explain the fluctuation of toxicity with D. mag$Na^+$ about 66% ~ 91% ($r^2=0.66{\sim}0.91$). The results of acute toxicity testing with V. fischeri of treated effluent (aggregate manufacture facilities) did not indicate toxicity (TU = 0), whereas that of chemical manufacture facilities indicated toxicity. V. fischeri, a candidate test organism, seemed suitable test organism for acute toxicity testing of effluent except high salinity (above 65‰ ~ 70‰) in aggregate manufacture facilities (nonmetalic minerals facilities). The performance of ion composition about treated effluent of surveyed facilities indicated that ion concentration of $Na^+$ (5,740 mg/L) and $Cl^-$ (9,727 mg/L) showed high level among 6 major ions ($Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $SO_4{^{2-}}$, $Cl^-$) in effluent of nonmetalic minerals facilities. In addition, Clion seemed to influence the D. magna survival rather than $Na^+$ ion.

The Toxicity Test of Water Flea by Heartbeat Measurement (물벼룩의 심장박동을 이용한 독성실험)

  • Lee, Chan-Won;Kim, In-Kyung;Jeon, Hong-Pyo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.425-432
    • /
    • 2007
  • The water flea has been used as a test organism of toxicity test for surface water. Toxicity test with water flea is categorized into two parts. One is acute toxicity test with observing immobility and mortality and the other is chronic toxicity test determined by survival and reproduction of water flea. Heartbeat measurement of water flea was designed as a short-term toxicity test in this study. Direct measurement of heartbeat under microscope by aid of video camera gives and early diagnosis of mortality in short time. Therefore, the effects of measuring illumination, measuring time, and non-feeding during the test on heartbeat of water flea was evaluated to establish a new test approach. Test organisms used in this study are Daphnia magna, a well standardizes toxicity test organism, and Simocephalus mixtus, a newly refined organism $IC_{50}$ values of these test organism by heartbeat measurement were compared and discussed. It was found that toxicity test by heartbeat measurement was a reproducible, easy and simple method accomplished in a few hours.

Implications for the Predictivity of Cell-Based Developmental Toxicity Assays Developed Two Decades Apart

  • Kawamura, Satoshi;Horie, Nobuyuki;Okahashi, Noriko;Higuchi, Hashihiro
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Many in vitro developmental toxicity assays have been proposed over several decades. Since the late 1980s, we have made intermittent attempts to introduce in vitro assays as screening tests for developmental toxicity of inhouse candidate products. Two cell-based assays which were developed two decades apart were intensively studied. One was an assay of inhibitory effects on mouse ascites tumor cell attachment to a concanavalin A-coated plastic sheet surface (MOT assay), which we studied in the early days of assay development. The other was an assay of inhibitory effects on the differentiation of mouse embryonic stem cell to beating heart cells (EST assay), which we assessed more recently. We evaluated the suitability of the assays for screening in-house candidates. The concordance rates with in vivo developmental toxicity were at the 60% level. The EST assay classified chemicals that inhibited cell proliferation as embryo-toxic. Both assays had a significant false positive rate. The assays were generally considered unsuitable for screening the developmental toxicity of our candidate compounds. Recent test systems adopt advanced technologies. Despite such evolution of materials and methods, the concordance rates of the EST and MOT systems were similar. This may suggest that the fundamental predictivity of in vitro developmental toxicity assays has remained basically unchanged for decades. To improve their predictivity, in vitro developmental toxicity assays should be strictly based on elucidated pathogenetic mechanisms of developmental toxicity.

Biological Evaluation for Characteristics of Leachate Toxicity from Municipal Solid Waste Landfill (생물학적 방법에 의한 도시생활폐기물 매립지의 침출수 독성특성 평가)

  • 황인영;류경무
    • Environmental Analysis Health and Toxicology
    • /
    • v.11 no.1_2
    • /
    • pp.31-39
    • /
    • 1996
  • Leachate from municipal solid waste (MSW) landfill, effluent from leachate treatment plant, and ground water sample from a monitoring well near landfill site were tested for an acute toxicity. Microtox toxicity test was used for testing the acute toxicity of leachate and other samples. EC$_{50}$ values which a concentration of pollutant for reducing 50% light output from luminescent bacteria, Photobacterium phosphoreum were determined to assess the toxicity of pollutants as well as the relative toxicity. In addition, characteristics of leachate were studied and compared to those of phenol and pentachlorophenol (PCP) which are typical aquatic toxic pollutants. For leachate, EC$_{50}$ for 30 min incubation was 10.8%, while for phenol and PCP, 46 ppm and 1.2 ppm, respectively. the relative toxicity of treated leachate by in situ aeration with activated sludge was reduced to more than 75% of toxicity of the untreated leachate. Microtox toxicity test was failed to figure out EC$_{50}$ values for groundwater from a monitoring well since the relative toxicity of the unconcentrated sample was too low to estimate EC$_{50}$. Addition of activated carbon to leachate was reduced the relative toxicity. The reduction Pattern of the relative toxicity of leachate by mechanical aeration was similar to that of PCP, but different from that of phenol. These findings suggest that the toxicity of leachate may come from PCP-like toxic compounds rather than phenol-like one. In conclusion, the process of aeration with activated sludge might be very important to reduce the environmental toxicity of leachate. And Microtox test could be a reasonable bioassay for screening and monitoring the environmental toxicity of leachate from municipal solid waste landfill as well as for determining the reduction efficiency of the leachate toxicity by various treatment processes in leachate treatment plant.

  • PDF

TOXICITY IDENTIFICATION AND CONFIRMATION OF METAL PLATTING WASTEWATER

  • Kim, Hyo-Jin;Jo, Hun-Je;Park, Eun-Joo;Cho, Ki-Jong;Shin, Key-Il;Jung, Jin-Ho
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2007
  • Toxicity of metal plating wastewater was evaluated by using acute toxicity tests on Daphnia magna. To identify toxicants of metal plating wastewater, several manipulations such as solid phase extraction (SPE), ion exchange and graduated pH adjustment were used. The SPE test had no significant effect on baseline toxicity, suggesting absence of toxic non-polar organics in metal plating wastewater. However, anion exchange largely decreased the baseline toxicity by 88%, indicating the causative toxicants were inorganic anions. Considering high concentration of chromium in metal plating wastewater, it is thought the anion is Cr(VI) species. Graduated pH test showing independence of the toxicity on pH change strongly supports this assumption. However, as revealed by toxicity confirmation experiment, the initial toxicity of metal plating wastewater (24-h TU=435) was not explained only by Cr(VI) (24-h TU = 725 at $280\;mg\;L^{-1}$). Addition of nickel($29.5\;mg\;L^{-1}$) and copper ($26.5\;mg\;L^{-1}$) largely decreased the chromium toxicity up to 417 TU, indicating antagonistic interaction between heavy metals. This heavy metal interaction was successfully predicted by an equation of 24-h $TU\;=\;3.67\;{\times}\;\ln([Cu]\;+\;[Ni])\;+\;79.44$ at a fixed concentration of chromium.

Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment (감마선 처리를 이용한 고무공장 폐수의 생물독성 저감)

  • Park, Eun-Joo;Jo, Hun-Je;Cho, Kijong;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.