• 제목/요약/키워드: environmental fraternitive photopolymerization

검색결과 2건 처리시간 0.015초

메틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성 (A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Methyl Methacrylate)

  • 주영배;이내우;최재욱;강돈오;설수덕
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.68-75
    • /
    • 2001
  • Photopolymerization, the utilization of electromagnetic radiation(or light) as the energy source for polymerization of functional monomers, oligomers is the basis of important commercial processes with broad applicability, including photoimaging and RV curing of coatings and inks. The objective of this study is to investigate the characteristics of environmental fraternitive photopolymerization of methyl methacrylate(MMA). This work is the first step to continue further research about alkyl methacrylate. The experiment was done in aqueous solution under the influence of photo-initiator concentration(0.05-0.25mol/l), light intensity (5000-9000 ${\mu}J/cm^2$) and monomer concentration(2-6mol/l). Methyl methacrylate was polymerized to high conversion ratio using hydrogen peroxide($H_2O_2$) and the kinetics model we have obtained is as follows. $R_p=k_p[S]^{0.41}[M]^{0.62}[L]^{2.45} exp(53.64/RT$). The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it res 45.4Kca1/mol.

  • PDF

부틸메타크릴레이트의 환경친화적인 광중합 및 열분해특성 (A Characteristics of Environmental Fraternitive Photopolymerization and Thermal Degradation on Butyl Methacrylate)

  • 최재욱;설수덕;이내우
    • 한국안전학회지
    • /
    • 제17권2호
    • /
    • pp.45-51
    • /
    • 2002
  • This study is the series of photopolymerization on alkyl methacrylate(AMA) to continue further research. The objective of this work is to investigate the environmental fraternitive characteristics of photopolymerization kinetics on n-Buthyl methacrylate(BMA) and comparing the decomposition behavior to other AMA. The experiment was done in aqueous solution under the influence of photo-initiator concentration$(0.05{\sim}0.25mol/l)$, light intensity$(5000{\sim}9000{\mu}J/cm^{2})$ and monomer concentration$(2.0{\sim}6.0mol/l)$. n-BMA was polymerized to high conversion ratio using hydrogen $peroxide(H_{2}O_{2})$, and the kinetics model we have obtained is as follows. $R_{p}=K_{p}[S]^{0.24}[M]^{0.33}[L]^{153}exp^{(27.19/RT)}$ The differential method of thermogravimetric analysis(Friedman method) was used to obtain value of activation energy on decomposition reaction. The average value of it was 27.5Kcal/mol.