• Title/Summary/Keyword: environmental durability

Search Result 836, Processing Time 0.026 seconds

The impact of different shapes of aggregate and crumb rubber on the deformation properties of asphalt concrete

  • Felix N. Okonta;Koketso Tshukutsoane;Babak Karimi
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • Bitumen and high-quality subangular aggregates, the two principal materials used for asphalt concrete construction, are finite and expensive materials. The general availability of crumb rubber and naturally occurring aggregates of different shapes, especially flat and elongated shapes, indicates that they are feasible alternative materials for expanding the volume of bitumen and utilizing a wider range of aggregate shapes for the development of asphalt concrete, with an associated environmental benefit. The study investigated the effect of adding up to 15% crumb rubber and aggregates sorted into different groups, i.e., rounded, elongated, flat, and their combinations, on the rheological and mechanical properties and durability of 50/70 of hot-mix asphalt pavement. The addition of crumb rubber decreased ductility and penetration but increased the softening point. For a 5.5% bitumen content, asphalt concrete briquettes consisting of 7% crumb rubber and three types of aggregate shapes, i.e., 100% rounded, a mix of 75% rounded and 25% elongated, and a mix of 75% rounded, 15% elongated and 10% flat, were associated with high Marshall stability and indirect tensile strength as well as low lateral deformation due to their high solidity and moderate angularity ratio. Also, the addition of 7% crumb rubber resulted in a significant improvement in the tensile strength ratio and rebound strain of briquettes consisting of 75% rounded and 25% elongated aggregates and those with 75% rounded, 15% elongated and 10% flat aggregates. In relation to the parameters investigated, the three groups of briquettes met some of the local (South Africa) requirements for the surface course and base course of low traffic volume roads.

Research on Actual Vehicle Application of Composite Regenerative DPF for Reducing Exhaust Gases of Light-duty Diesel Engines (소형디젤기관의 배출가스 저감을 위한 복합재생방식 DPF의 실차적용 연구)

  • Yun chul Lee;Sang ki Oh
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.68-74
    • /
    • 2024
  • As awareness of environmental pollution problems increases worldwide, interest in air pollutants is increasing. In particular, NOx and PM, which are major pollutants in diesel vehicles, are contributing significantly to emissions. As a result, its importance is increasing. In this study, based on research results applied to large diesel vehicles, the problem of natural regeneration caused by low exhaust gas temperature during low speed and low load operation is solved by applying a complex regeneration DPF that is not affected by temperature conditions to small diesel vehicles. The feasibility of application to small diesel vehicles was reviewed by measuring the emission reduction efficiency. As a result of the engine test, the power reduction rate and fuel consumption rate before and after device installation under full load conditions were 2.9% decrease and 3.5% increase, respectively, satisfying the standard for a 5% reduction, and as a result of the regeneration equilibrium temperature (BPT) test, the regeneration temperature was 310℃. appeared at the level. The reduction efficiency test results for the actual vehicle durability test equipment showed 97.3% PM, 51.0% CO, and 31.1% HC, while the city commuter vehicle had PM 97.5%, CO 61.7%, HC 40.0%, and the school bus vehicle had PM 96.8%, CO 44.4%, HC 34.3%, and low-speed logistics vehicles showed a reduction efficiency of 98.2% for PM, 36.0% for CO, and 45.7% for HC. Based on the results of this study, in the future, it is necessary to secure DPF technology suitable for all vehicle types through actual vehicle application research on temperature condition-insensitive composite regenerative DPF for medium-sized vehicles.

Fabrication of a Water Sterilization System Utilizing a 275 nm-wavelength UVC LED and TIR Lens-equipped Light Source (275 nm UVC LED와 TIR 렌즈 장착 광원을 이용하는 물 살균장치 제작)

  • Kawan Anil;Seung Hui Yu;Seung Hoon Yu;J. A. Park;I. S. Shin;S. J. Lee;Y. B. Kim;Y. B. Kown;D. G. Han;Soon Jae Yu;Heetae Kim;Seong Bae Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.84-87
    • /
    • 2024
  • A water sterilization system is developed utilizing a 275 nm-wavelength LED light source equipped with a TIR lens. The system's light source is constructed by combining a 275 nm-wavelength UVC LED, known for its germicidal properties, with a TIR lens having a direction angle of 6.8 degrees. The optical simulation software 'LightTools' is employed to design and optimize the intensity of deep ultraviolet sterilizing light irradiation, its distribution, and sterilization capacity. In the inactivation experiment with E. coli, the water sterilizer system achieved a sterilization rate of 78.92 % while maintaining a water flow capacity of 50 L/min. Compared to the conventional mercury lamp light source water sterilizer system, the UVC LED water sterilizer system addresses environmental concerns related to mercury usage and offers advantages in terms of lifespan and durability.

  • PDF

A computer vision-based approach for crack detection in ultra high performance concrete beams

  • Roya Solhmirzaei;Hadi Salehi;Venkatesh Kodur
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.341-348
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has received remarkable attentions in civil infrastructure due to its unique mechanical characteristics and durability. UHPC gains increasingly dominant in essential structural elements, while its unique properties pose challenges for traditional inspection methods, as damage may not always manifest visibly on the surface. As such, the need for robust inspection techniques for detecting cracks in UHPC members has become imperative as traditional methods often fall short in providing comprehensive and timely evaluations. In the era of artificial intelligence, computer vision has gained considerable interest as a powerful tool to enhance infrastructure condition assessment with image and video data collected from sensors, cameras, and unmanned aerial vehicles. This paper presents a computer vision-based approach employing deep learning to detect cracks in UHPC beams, with the aim of addressing the inherent limitations of traditional inspection methods. This work leverages computer vision to discern intricate patterns and anomalies. Particularly, a convolutional neural network architecture employing transfer learning is adopted to identify the presence of cracks in the beams. The proposed approach is evaluated with image data collected from full-scale experiments conducted on UHPC beams subjected to flexural and shear loadings. The results of this study indicate the applicability of computer vision and deep learning as intelligent methods to detect major and minor cracks and recognize various damage mechanisms in UHPC members with better efficiency compared to conventional monitoring methods. Findings from this work pave the way for the development of autonomous infrastructure health monitoring and condition assessment, ensuring early detection in response to evolving structural challenges. By leveraging computer vision, this paper contributes to usher in a new era of effectiveness in autonomous crack detection, enhancing the resilience and sustainability of UHPC civil infrastructure.

Physical Seed Treatment Techniques for Germination Enrichment and Seed Sterilization (발아증진 및 소독을 위한 물리적 방법을 이용한 종자처리 기술)

  • Si-Yong Kang
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.199-207
    • /
    • 2023
  • Since seeds can be directly used as food resources as well as for crop cultivation or preservation of genetic resources, it is essential to develop high-quality seed processing technology to increase agricultural productivity. Seed treatment means processing technologies of seeds through physical or chemical treatment processes from after harvesting seeds to before sowing of seeds to improve germination and growth rate, durability, and immunity, etc. Since chemical seed treatment technology using pesticides or plant growth regulators has problems of environmental pollution and human toxicity, it is desired to develop an alternative technology. As a physical seed treatment method, various technologies such as ionizing radiation, plasma, microwave, and magnetic field are being developed, and some of them are being used practically. In this paper, I will summarize the mechanism of seed priming and disinfection, and the advantages and disadvantages of application, focusing on these physical seed treatment methods. Low dose or moderate intensity ionizing radiation, microwave, low-temperature plasma, and magnetic field treatments often promoted seed germination and seedling growth. However, effective removal of direct seed pathogens at these treatment intensities appears to be difficult. And it has been shown that relatively high-dose electron beam treatment using low-energy electron beams kills microorganisms on the seed surface and hull layer while not damaging the inner tissue of the seed, and is also effectively used for seed treatment on a commercial scale. In order to put the physical seed treatment technology to practical use in Korea, it is necessary to develop an economical scale treatment device along with the development of individual treatment technology to each crop.

Assessment of cold-formed steel screwed beam-column conections: Experimental tests and numerical simulations

  • Merve Sagiroglu Maali;Mahyar Maali;Zhiyuan Fang;Krishanu Roy
    • Steel and Composite Structures
    • /
    • v.50 no.5
    • /
    • pp.515-529
    • /
    • 2024
  • Cold-formed steel (CFS) is a popular choice for construction due to its low cost, durability, sustainability, resistance to high environmental and seismic pressures, and ease of installation. The beam-column connections in residential and medium-rise structures are formed using self-drilling screws that connect two CFS channel sections and a gusset plate. In order to increase the moment capacity of these CFS screwed beam-column connections, stiffeners are often placed on the web area of each single channel. However, there is limited literature on studying the effects of stiffeners on the moment capacity of CFS screwed beam-column connections. Hence, this paper proposes a new test approach for determining the moment capacity of CFS screwed beam-column couplings. This study describes an experimental test programme consisting of eight novel experimental tests. The effect of stiffeners, beam thickness, and gusset plate thickness on the structural behaviour of CFS screwed beam-column connections is investigated. Besides, nonlinear elasto-plastic finite element (FE) models were developed and validated against experimental test data. It found that there was reasonable agreement in terms of moment capacity and failure mode prediction. From the experimental and numerical investigation, it found that the increase in gusset plate or beam thickness and the use of stiffeners have no significant effect on the structural behaviour, moment capacity, or rotational capacity of joints exhibiting the same collapse behaviour; however, the capacity or energy absorption capacities have increased in joints whose failure behaviour varies with increasing thickness or using stiffeners. Besides, the thickness change has little impact on the initial stiffness.

Experimental Verification of Reinforced Concrete Beam with FRP Rebar (FRP 보강콘크리트 보의 휨거동에 관한 실험적 연구)

  • Oh, Hong Seob;Ahn, Kwan-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.93-100
    • /
    • 2008
  • The use of fiber reinforced polymer (FRP) composites is significantly growing in construction and infrastructure applications where durability under harsh environmental conditions is of great concern. In order to examine the applicability of FRP rebar as a reinforcement in flexural member, flexural tests were conducted. 12 beams with different FRP materials such as CFRP, GFRP and Hybrid FRP and reinforcement ratio were tested and analyzed in terms of failure mode, moment-deflection, flexural capacity, ductility index and sectional strain distribution. The test results were also compared with the theoretical model represented in ACI 440.1R06. Test results indicate that the flexural capacity of the beams reinforced by FRP bars can be accurately predicted using the ultimate design theory. They also show that the current ACI model for computing the deflection overestimates the actual deflection of GFRP series and underestimates the deflection of CFRP series.

Strength Characteristics of the Soil Mixed with a Natural Stabilizer (친환경 토양안정재를 혼합한 지반의 강도특성)

  • Kwon, Youngcheul;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • This article aims to find method to mix a harmless hardening agent and soil generated during construction to make paving materials. The main purpose of this research is to get rid of the harmfulness(Chromium (VI), etc.) of cement which has been generally and frequently used as a hardening agent and strengthen it so that it can be used for the general foundation solidification and stabilization of civil engineering/construction structures such as dredging soil treatment, marine structure foundation treatment, surface soil stabilization, and river bank erosion prevention. NSS(Natural Stabilizer Soil) used for this study takes as its chief ingredient the mixture of lime and staple fibers extracted from natural fibers. It increases the shearing strength of soil that it improves the support and durability of the foundation and prevents flooding and frost as well. The pH measured to know its eco-friendliness was 6.67~7.15, and according to the migration testing, only Pb and CN were lower than the standards, so it can be said that NSS has almost no harmful components in it. According to the result of uniaxial strength testing, when the mixture ratio of weathered soil to NSS was 6%, about 1,850kpa strength was expressed. And according to the result of CBR. testing to figure out its appropriateness as a paving material, the CBR of the foundation was 4%~6%. But when the mixture ratio of NSS is over 6%, the water immersion CBR. is over 100%; thus, it is expected that it will show great utility as a paving material.

Durability Extension of Fe(0) Column with Shewanella Algae BrY on TCE Treatment (Shewanella algae BrY를 이용한 영가철 칼럼의 TCE 처리 수명연장)

  • Chae, Heehun;Bae, Yeunook;Park, Jae-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.41-48
    • /
    • 2007
  • Zevo-valent iron (ZVI) has been widely used in permeable reactive barriers for reducing organic contaminants, such as trichloroethylene (TCE). The rapid reaction time, however, leads to decrease in reactivity and availability of ZVI. Shewanella algae BrY, a strain of dissimilatory iron reducing bacteria, can reduce the oxidized Fe (III) to Fe (II) and reduced Fe (II) can be reused to reduce the contaminant. The effect of Shewanella algae BrY on the reduction of the oxidized ZVI column and further TCE removal in the contaminated groundwater were studied at different flow rates and TCE input concentrations in this study. High input concentration of TCE and flow rate increase the amount of input contaminant and make to lower the effect of reduction by Shewanella algae BrY. Specially, the fast flow rate inhibits the direct contact and implantation on the surface of iron. The reduction of oxidized iron reactive barrier by Shewanella algae BrY can decrease the decreation of duration of PRBs by the precipitation of oxidized iron produced by dechlorination of TCE.

  • PDF

Determination of Structural Lightweight Concrete Mix Proportion for Floating Concrete Structures (콘크리트 부유구조체 적용을 위한 구조용 경량콘크리트의 최적배합비 선정)

  • Kim, Min Ook;Qian, Xudong;Lee, Myung Kue;Park, Woo-Sun;Jeong, Shin Taek;Oh, Nam Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.315-325
    • /
    • 2017
  • This study aims to provide information for the design and use of structural lightweight concrete (SLWC) for floating concrete structures in a marine environment. An experimental program was set up and comprehensive experimental campaign were carried out to determine SLWC mix proportions that can satisfy specified concrete strength, density, and slump values all of them were determined from previous research. Comparisons with previous SLWC mix designs that have been utilized for actual floating concrete structures were made. Key aspects needed to be considered regarding to the use of SLWC for floating marine concrete structures were discussed.