• Title/Summary/Keyword: environmental construction

Search Result 7,724, Processing Time 0.042 seconds

A Study on the Valuation of a Supply Chain Considering Management Efficiency and Environmental Effect (운영 효율성과 환경 영향을 고려한 공급사슬 평가에 관한 연구)

  • Kim, Ji-Yeon;Kim, Hae-Joong;Shin, Ki-Tae;Park, Jin-Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.29-38
    • /
    • 2007
  • Recently, the deepening of the environment and accompanying concerns produce various environmental regulations. For example, EPR(Extended Producer Responsibility) is emphasized in many countries such as USA and Europe. According to this, the construction of a reverse supply chain is under compulsion. A diversity of parts can be controlled by a government or enterprises in the construction and management of a reverse supply chain and the effect to the environment is changed according to the policy. Therefore, it is essential to understand the effects of regulations or policies of a government and enterprises on a supply chain. The object of this research is to develop a means to assess the management efficiency and the environmental effect over a whole supply chain and show the effects of various reverse supply chain construction policies on a supply chain. This model can be utilized to establish appropriate policies by understanding the change in the management efficiency and the environmental effect according to the reverse supply chain construction and management method.

  • PDF

Hydrogen Production from Pyrolysis Oil of Waste Plastic on 46-3Q Catalyst (46-3Q 촉매 상에서 폐플라스틱의 열분해 오일로부터 수소 제조 )

  • SEUNGCHEOL SHIN;HANEUL JUNG;DANBEE HAN;YOUNGSOON BAEK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.601-607
    • /
    • 2023
  • Pyrolysis oil (C5-C20) produced using plastic non-oxidative pyrolysis technology produces naphtha oil (C5-C10) through a separation process, and naphtha oil produces hydrogen through a reforming reaction to secure economic efficiency and social and environmental benefits. In this study, waste plastic pyrolysis oil was subjected to a steam reforming reaction on a commercialized catalyst of 46-3Q And it was found that the 46-3Q catalyst reformed the pyrolysis oil to produce hydrogen. Therefore, an experiment was performed to increase hydrogen yield and minimize the byproduct of ethylene. The reaction experiment was performed using actual waste plastic oil (C8-C11) with temperature, steam/carbon ratio (S/C) ratio, and space velocity as variables. We studied reaction conditions that can maximize hydrogen yield and minimize ethylene byproducts.

Investigation of the Effect of Weirs Construction in the Han River on the Characteristics of Sediments (보 설치가 퇴적물 특성에 미치는 영향에 관한 연구)

  • Kang, Min Kyoung;Choi, In Young;Park, Ji Hyoung;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.597-603
    • /
    • 2012
  • To investigate the effects of weir construction on sediment characteristics of river bed, we conducted sediments sampling on the 9 locations near the weir, Kangchun, Yuju and Ipo in Namhan-River. Physical and chemical characteristics of sediments were analyzed by measuring particle size distribution, water content, Ignition loss, COD (Chemical Oxyzen Demand), TOC (Total Organic Carbon), TP (Total Phosphorus), SRP (Soluble Reactive Phosphorus) and TN (Total Nitrogen). Particle classification of all three weir sediments showed sandy loam that was caused by the river bed dredging. Due to the presence of weir, Ignition loss, COD, TOC, TP, SRP and TN showed similar trend such as the concentrations of upward weir had higher than those of downward weir. For the case of SRP concentration and C/N ratio, however, there is not much difference in the sediment characteristics compared to the those of sediments before weir construction. Therefore, It can be predicted that there are little effects of weir construction on sediment characteristics. However, weir construction could influence water quality of the river by controlling the transport and the accumulation of suspended materials from rainfall. Therefore, more intensive monitoring is required to examine the magnitude and patterns of sediment accumulation which could influence overlying water quality.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Analysis of biodiversity change trend on urban development project - Focusing on terrestrial species in Environmental Impact Assessment - (도시의 개발 사업에 따른 생물다양성 변화 추세 분석 - 환경영향평가의 육상 동물종을 중심으로 -)

  • Kim, Eun-Sub;Lee, Dong-Kun;Jeon, Yoon-Ho;Choi, Ji-Young;Kim, Shin-Woo;Hwang, Hye-Mi;Kim, Da-Seul;Moon, Hyun-Bin;Bae, Ji-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.21-32
    • /
    • 2023
  • The Environmental Impact Assessment (EIA) plays a pivotal role in predicting the potential environmental impacts of proposed developments and planning appropriate mitigation measures to minimize effects on species. However, as concerns over biodiversity loss rise, there's ongoing debate about the efficacy of these mitigation plans. In this study, we utilized data from EIAs and post-environmental impact surveys to understand the trends in biodiversity during construction and operation phases. By examining 30 urban development projects, we categorized species richness indices of mammals, birds, amphibians, and reptiles into pre-construction, during construction, and post-construction operational stages. The biodiversity trends were analyzed based on the rate of change in these indices. The results revealed three distinct biodiversity change patterns: (A) An initial increase in biodiversity indices post-development, followed by a gradual decline over time; (B) a sustained increase in biodiversity as a result of mitigation measures; and (C) a continuous decline in biodiversity post-development. Furthermore, all species exhibited a higher rate of biodiversity decline during the construction phase compared to the operational phase, with mammals showing the most significant rate of change. Notably, the biodiversity change rate during operation was generally lower than during construction. In particular, mammals seemed to be most influenced by mitigation measures, displaying the smallest rate of change. This study provides empirical evidence on the efficacy of mitigation measures and deliberates on ways to enhance their effectiveness in minimizing the adverse impacts of urban development on biodiversity. These findings can serve as foundational data for addressing terrestrial biodiversity reduction.

Development of Route Selecting System based on GIS for Prior Environmental Review using AHP (AHP 기법을 활용한 GIS기반의 사전환경성검토 노선선정시스템 개발)

  • Kim, Sang-Seok;Jang, Yong-Gu;Yang, Seung-Tae;Kang, In-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.152-163
    • /
    • 2007
  • The on-going pre-environmental investigation at present is performed by separate numerical analysis of each provision which makes integrated pre-environmental investigation is difficult. The application of numerical data is insufficient, which results to the deterioration of environmental investigation result's objectivity. A lot of time and money is required for the investigation. In this study, the spacial analysis function of GIS was applied on the 8 pre-environmental investigation factors. Pre-environmental investigation GIS DMS(Decision Making System) using AHP was constructed to make integrated investigation possible through the use of investigation results for each factor. Through the use of the developed pre-environmental investigation GIS DMS and the pre-constructed GIS data, the objectivity of environmental investigation is sufficient and time and cost are reduced. Therefore, this system can be used for pre-environmental investigation during route selection in the initial stages of road construction. Through the numerical and visual data obtained from the system developed in this paper, it is easier to gain the approval of the public. Furthermore, environmental problems due to road construction can be investigated with less time and money during the initial stages of road construction.

  • PDF

Behavior Case Study of Temporary Structures during Underground Extension Work by Field Measurement (현장계측을 통한 지하증축공사 중 가설구조물의 거동 사례연구)

  • Kim, Uiseok;Min, Byungchan;Kang, Minkyu;Kim, Dongkwan;Choi, Hangseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.8
    • /
    • pp.5-13
    • /
    • 2020
  • During the construction of underground space expansion of old facilities, it is necessary to secure temporary residence space for existing residents as well as noise and vibration issues during construction, and in the case of commercial, industrial, and social use, damage is expected from suspension of the use of facilities. There is a need for a technology that minimizes noise and vibration during underground expansion, enabling the use of existing facilities even during construction. In this study, a practical underground extension model is proposed by analyzing the behavior of the temporary structure and the surrounding ground as a result of measurement at each construction stage for a actual construction site. In order to solve the problems that occurred during construction, the basement slabs were placed in advance after the initial excavation. The measurement results (building inclinometer, crack measurement system, structure inclinometer and surface settlement meter) at the site were reviewed to analyze the behavior of the temporary structure and surrounding ground. As a result, it was confirmed that the inclinometer of the building and the structural inclinometer showed a tendency that the displacement after the slab line was placed was reduced or converged. The placement of basement slabs during underground extension not only relived the noise and vibration problems during construction, but also secured the stability of structures.

Study on mechanical behaviors of cable-supported ribbed beam composite slab structure during construction phase

  • Qiao, W.T.;An, Q.;Wang, D.;Zhao, M.S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.177-194
    • /
    • 2016
  • The cable-supported ribbed beam composite slab structure (CBS) is a new type of pre-stressed hybrid structure. The standard construction method of CBS including five steps and two key phases are proposed in this paper. The theoretical analysis and experimental research on a 1:5 scaled model were carried out. First, the tensioning construction method based on deformation control was applied to pre-stress the cables. The research results indicate that the actual tensile force applied to the cable is slightly larger than the theoretical value, and the error is about 6.8%. Subsequently, three support dismantling schemes are discussed. Scheme one indicates that each span of CBS has certain level of mechanical independence such that the construction of a span is not significantly affected by the adjacent spans. It is shown that dismantling from the middle to the ends is an optimal support dismantling method. The experimental research also indicates that by using this method, the CBS behaves identically with the numerical analysis results during the construction and service.

Assessment of Requirements for Successful Mobile Project Management Information Systems

  • Lee, Ung-Kyun;Jeong, Hyung Seok David;Woldesenbet, Asregedew
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2014
  • The objective of this study is to assess the requirements of tablet PC-based PMIS applications designed for use on construction sites to determine whether these new programs can play a significant role in increasing the efficiency of a project. In this research, the current market conditions of PMIS running on a tablet PC were analyzed. In addition, two industry surveys were conducted. A research team interviewed some industry experts and identified fourteen useful and desirable functions that can be incorporated into tablet PC-based applications and project management tools. Through a questionnaire survey, the most effective functions for the tablet PC-based PMIS were identified. The three top-rated functions among those suggested were Contact Information for Job-Related Personnel; Receive and Respond to Submittals, RFIs, and Notices; and Problem Solving for Design and Engineering Issues. The results of this research are expected to provide helpful information for mobile application developers and members of other interested groups in the construction industry.

A Study on Radon Emission Reduction of Construction Materials using Radon-reducing Agent (라돈 저감제를 이용한 건축자재의 라돈 방출 저감 연구)

  • Park, Kyung-Buk;Lee, Sang-Houck
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.6
    • /
    • pp.484-491
    • /
    • 2014
  • Objectives: A radon emission reducing agent was prepared using charcoal and zeolite, and the amount was measured after coating construction materials with the agent. The availability of the radon emission reducing agent was evaluated. Methods: Construction materials (red brick, cement brick, and gypsum board) coated with reducing agent were placed in a chamber to measure radon emissions. The construction materials were coated one through three times. The spread volume for brick and gypsum board was 50 mL and 75 mL per application, respectively. The amount of radon emitted was measured by RAD-7 after 48 hours. Results: The reduction ratio increased with the number of coatings, and the reduction ratios for red brick, cement brick, and gypsum board were 63.3, 73.6, and 58%, respectively, in the case of three coatings of RA-1. The reduction ratios for red brick, cement brick, and gypsum board were 42.8, 58.1, and 26.2%, respectively in the case of three coatings with RA-2. RA-1 was slightly better than RA-2 in radon emission reduction. Conclusions: Radon emissions from construction materials decreased according to the concentration of reducing agent coating, and it was more effective than existing methods.