• Title/Summary/Keyword: environmental challenge

Search Result 379, Processing Time 0.031 seconds

Financial Status and Business Performance Outlook of Construction Companies (건설 기업의 재무 상태와 경영 성과 전망)

  • Kim, Byungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.659-666
    • /
    • 2023
  • Characterized by boom-and-bust cycles, low entry barriers, and an almost perfectly competitive structure, the construction industry presents a unique challenge for the survival and growth of its constituent companies. A crucial aspect of this challenge is the ongoing monitoring of their financial health and business performance. To understand the typical financial and operational status of construction companies, this study analyzes the financial statements of 6,252 such companies, all of which have undergone at least one external audit between 2000 and 2019. These statements were used to develop combined financial profiles and derive industry averages. The findings indicate that the construction industry experiences limited growth in sales and profitability. High leverage ratios can jeopardize financial stability, pushing companies to seek production efficiency, such as enhancing gross asset turnover. This tendency has been particularly noticeable in the aftermath of the global financial crisis in 2008.

The Opportunities and Challenges of Implementing BEAM Plus in Hong Kong from the Perspectives of Government and Developers

  • Lau, Ka-ho;Fu, Man-man;Yim, Yik-fung;Zayed, Tarek;Sun, Yi
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.333-342
    • /
    • 2020
  • Due to the enhancing environmental concerns worldwide with the need of increasing demand for sustainability of building design, maintenance and operation, key stakeholders including the government and developers in many countries strike for the benefits in implementing the green design and building concepts in constructing, infrastructure as well as the buildings. Different countries have their standards or certifications for green buildings while the adoption rate of BEAM-Plus in HK is relatively less compared with other developed countries such as Europe, USA and Japan. Therefore, in the present research, BEAM-Plus, the beginning assessment method of green standard implemented in HK, will be mainly discussed. Current situation of BEAM-Plus implementation in HK will be reviewed and then adopt a systematic approach via literature review and research paper, questionnaire with Analytic Hierarchy Process (AHP) method to depict the opportunities and challenges from the perspective of government and developers regarding implementing BEAM-Plus in HK and thus investigate the implementation gaps. It is found that for both the macro level of opportunity and challenge, the most important criterion is political, in which the weighting value are 0.3114 and 0.2321 respectively. It is obvious that government plays a critical and significant role in affecting the development of BEAM plus. Technological difficulty is also an important factor that challenging and hindering the implementation of BEAM plus, the weighting value is 0.2194 under challenge hierarchy. More experts and professionals should be imported to Hong Kong to enhance the technique is building green buildings. At the end of this paper, solutions and actions will also be suggested and concluded in alleviating the challenges. Finally, solutions and actions are suggested and concluded in alleviating the challenges. Findings from this research can guide developers to consider adopting green elements, government and Green Building Council in HK to review green buildings' policy.

  • PDF

Integrating physics-based fragility for hierarchical spectral clustering for resilience assessment of power distribution systems under extreme winds

  • Jintao Zhang;Wei Zhang;William Hughes;Amvrossios C. Bagtzoglou
    • Wind and Structures
    • /
    • v.39 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Widespread damages from extreme winds have attracted lots of attentions of the resilience assessment of power distribution systems. With many related environmental parameters as well as numerous power infrastructure components, such as poles and wires, the increased challenge of power asset management before, during and after extreme events have to be addressed to prevent possible cascading failures in the power distribution system. Many extreme winds from weather events, such as hurricanes, generate widespread damages in multiple areas such as the economy, social security, and infrastructure management. The livelihoods of residents in the impaired areas are devastated largely due to the paucity of vital utilities, such as electricity. To address the challenge of power grid asset management, power system clustering is needed to partition a complex power system into several stable clusters to prevent the cascading failure from happening. Traditionally, system clustering uses the Binary Decision Diagram (BDD) to derive the clustering result, which is time-consuming and inefficient. Meanwhile, the previous studies considering the weather hazards did not include any detailed weather-related meteorologic parameters which is not appropriate as the heterogeneity of the parameters could largely affect the system performance. Therefore, a fragility-based network hierarchical spectral clustering method is proposed. In the present paper, the fragility curve and surfaces for a power distribution subsystem are obtained first. The fragility of the subsystem under typical failure mechanisms is calculated as a function of wind speed and pole characteristic dimension (diameter or span length). Secondly, the proposed fragility-based hierarchical spectral clustering method (F-HSC) integrates the physics-based fragility analysis into Hierarchical Spectral Clustering (HSC) technique from graph theory to achieve the clustering result for the power distribution system under extreme weather events. From the results of vulnerability analysis, it could be seen that the system performance after clustering is better than before clustering. With the F-HSC method, the impact of the extreme weather events could be considered with topology to cluster different power distribution systems to prevent the system from experiencing power blackouts.

In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system

  • Ni, Y.Q.;Li, B.;Lam, K.H.;Zhu, D.P.;Wang, Y.;Lynch, J.P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.83-102
    • /
    • 2011
  • As a testbed for various structural health monitoring (SHM) technologies, a super-tall structure - the 610 m-tall Guangzhou Television and Sightseeing Tower (GTST) in southern China - is currently under construction. This study aims to explore state-of-the-art wireless sensing technologies for monitoring the ambient vibration of such a super-tall structure during construction. The very nature of wireless sensing frees the system from the need for extensive cabling and renders the system suitable for use on construction sites where conditions continuously change. On the other hand, unique technical hurdles exist when deploying wireless sensors in real-life structural monitoring applications. For example, the low-frequency and low-amplitude ambient vibration of the GTST poses significant challenges to sensor signal conditioning and digitization. Reliable wireless transmission over long distances is another technical challenge when utilized in such a super-tall structure. In this study, wireless sensing measurements are conducted at multiple heights of the GTST tower. Data transmission between a wireless sensing device installed at the upper levels of the tower and a base station located at the ground level (a distance that exceeds 443 m) is implemented. To verify the quality of the wireless measurements, the wireless data is compared with data collected by a conventional cable-based monitoring system. This preliminary study demonstrates that wireless sensing technologies have the capability of monitoring the low-amplitude and low-frequency ambient vibration of a super-tall and slender structure like the GTST.

Role of Surface Protective Antigen A in the Pathogenesis of Erysipelothrix rhusiopathiae Strain C43065

  • Borrathybay, Entomack;Gong, Feng-juan;Zhang, Lei;Nazierbieke, Wulumuhan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.206-216
    • /
    • 2015
  • To clarify the role of surface protective antigen A (SpaA) in the pathogenesis of Erysipelothrix rhusiopathiae C43065 (serotype 2), the spaA deletion mutant of E. rhusiopathiae ${\Delta}spaA$ was constructed by homologous recombination. The virulence of the ${\Delta}spaA$ mutant decreased more than 76-fold compared with that of the wild-type strain C43065 in mice. The mutant strain was sensitive to the bactericidal action of swine serum, whereas the wild-type strain was resistant. The adhesion of wild-type strain to MEF cells was inhibited significantly by treatment with rabbit antiserum against recombinant SpaA (rSpaA) as compared with the treatment with normal rabbit serum, but the mutant strain was not affected. The mutant strain was readily taken up by mouse peritoneal macrophages in the normal rabbit serum, whereas the wild-type strain was resistant. Whereas the rabbit antiserum against rSpaA promoted the phagocytosis of wild-type strain by macrophages, the mutant strain was not affected. In addition, mice vaccinated with the formalin-killed mutant strain were provided 40% protection against challenge by the homologous virulent strain as compared with those with wild-type strain, NaOH-extracted antigen, or rSpaA, which provided more than 80% protection against the same infection. These suggested that SpaA has an important role in the pathogenesis of E. rhusiopathiae infection and could be a target for vaccination against swine erysipelas.

INJECTION STRATEGY OF DIESEL FUEL FOR AN ACTIVE REGENERATION DPF SYSTEM

  • Lee, C.H.;Oh, K.C.;Lee, C.B.;Kim, D.J.;Jo, J.D.;Cho, T.D.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.27-31
    • /
    • 2007
  • The number of vehicles employing diesel engines is rapidly rising. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced exhaust regulations. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter (PM), but the improvement of a regeneration performance at any engine operation point presents a considerable challenge by itself. Therefore, the present study evaluates the effect of fuel injection characteristics on regeneration performance in a DOC and a catalyzed CR-DPF system. The temperature distribution on the rear surface of the DOC and the exhaust gas emission were analyzed in accordance with fuel injection strategies and engine operating conditions. A temperature increase more than BPT of DPF system was obtained with a small amount fuel injection although the exhaust gas temperature was low and flow rate was high. This increase of temperature at the DPF inlet cause PM to oxidize completely by oxygen. In the case of multi-step injection, the abrupt temperature changes of DOC inlet didn't occur and THC slip also could not be observed. However, in the case of pulse type injection, the abrupt injection of much fuel results in the decrease of DOC inlet temperatures and the instantaneous slip of THC was observed.

Clinical features of fish with pathogens isolated from emaciated olive flounder Paralichthys olivaceus (여윔증상 넙치, Paralichthys olivaceus로부터 분리된 병원균의 임상적 고찰)

  • Choi, Hye-Sung;Jun, Lyu-Jin;Kim, Seoung-Min;Jeong, Hyun-Do;Kim, Yi-Kyung;Lim, Hee-Young;Yeo, In-Kyu;Jeong, Joon-Bum
    • Journal of fish pathology
    • /
    • v.25 no.2
    • /
    • pp.67-76
    • /
    • 2012
  • Two bacteria strains were isolated from emaciated olive flounder (Paralichthys olivaceus) in aquafarm and were identificated as Vibrio harveyi (JV1) and Edwardsiella tarda (JE1), respectively. In the challenge experiments, we found 100% cumulative mortalities in all of olive flounder injected with JV1, JE1 or JV1+JE1 within eleven days after the injection. Two bacteria strains were reisolated from dead fish and were analyzed using the PCR method. In the physilogical analysis, the hematocrit, AST, ALT and cholesterol levels in experimental groups were increased significantly compared to those in control group, but the glucose, total protein and triglyceride levels were significantly decreased. Additionally, the lysozyme activity in the blood serum was decreased. The histopathological observations of the intestine showed that all groups had detachment and destruction of epithelial tissues except for the control group.

A Metaheuristic Algorithm based Redesign Methodology for Green Product Family Considering Environmental Performance (환경성을 고려한 메타 휴리스틱 알고리즘 기반의 그린 Product Family 재설계 방법론)

  • Seo, Kwang-Kyu
    • Journal of Digital Convergence
    • /
    • v.12 no.5
    • /
    • pp.125-130
    • /
    • 2014
  • The competitiveness in today's global market forces many companies to develop families of products to provide enough variety for the marketplace. The challenge when designing a product family is in resolving the tradeoff between product commonality and distinctiveness. Simultaneously it is necessary to consider environmental performance to design a product family as well as to shorten lead-times, improve quality and reduce costs. This paper proposes a metaheuristic algorithm based redesign methodology for green product family considering environmental performance. The proposed method uses a genetic algorithm as metaheuristic algorithm and green product family index (GPFI) to support green product family design. In addition, it provides the redesign methodology such as product family level and component level. A case study used table lamps as an product family's example shows the verification and effectiveness of the proposed method.

Implications of Deep Nitrite in the Ulleung Basin (울릉 분지 저층수의 아질산염)

  • Lee, Tong-Sup;Kim, Il-Nam;Kang, Dong-Jin;Kim, Dong-Seon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.239-243
    • /
    • 2007
  • Presence of bottom water nitrite in the Ulleung Basin was remarkable because it is totally unexpected phenomenon at such an oxygen-rich environment. Yet no scientific explanation was set forward. Of several plausible explanations, following the Ockham's suggestion, a leaching of nitrite as an intermediate product of denitrification in the top sediment at the slope is most agreeable to given environmental settings. There seems no complementary process to make up the loss of N in the Ulleung Basin, which seems contribute to the characteristically low N:P ratio in the deep waters. If warming proceeds that weakens the thermohaline circulation, a current biological pump may stall and the phytoplankton assemblage might replaced drastically. If so this will pause an utmost challenge to the ecosystem of the East/Japan Sea. Still there remains a contradictory sedimentary signature that requests further explanation regarding the N (or organic C)-cycle such as extraordinarily high organic carbon content despite abundant oxidants in the overlying waters.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.