• Title/Summary/Keyword: environmental actions

Search Result 455, Processing Time 0.029 seconds

Improvement for Reservoir Operation Module of Flood Forecasting-Warning Systems in Han River (한강 홍수예경보시스템의 저수지 운영모듈 개선)

  • Kwon, Oh-Ig;Kim, Sung;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.685-695
    • /
    • 1999
  • On the premise of flood control procedure, flood forecasting-warning, system(FFWS) is one of actions for disaster prevention. It makes public announcements for flood situations timely in order to mitigate damage from floodings. Multi-purpose dam which has flood control storage plays an important role in river basin at flood time. In FFWS, it is reservoir operation module that is related to reservoir operation of multi-purpose dam. This study considers the current conditions and problems in reservoir operation module of FFWS in Han River and improves reservoir operation module under limited research scope. As results, additional reservoir operation modules such as Technical ROM(Reservoir Operation Method) and ARD(Approved Release Discharge) ROM were built in FFWS. Using these newly built reservoir operation modules. Han River Flood Control Office will plan and work for flood control and flood forecasting. Firstly, it may plan for flood control by Technical ROM which is deterministic simulation model, and work for final flood control and flood forecasting by ARD ROM according to approved release discharge afterward.

  • PDF

Reduction of Shear Strength of Railway Roadbed Materials with Freezing-thawing Cycle (동결융해 반복에 따른 철도노반재료의 전단강도 변화)

  • Choi, Chan yong;Shin, Eun chul;Kang, Hyoun Hoi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.13-21
    • /
    • 2011
  • In seasonal frozen areas with climatic features, which have a temperature difference in the winter and thawing season, changes of mechanical properties of the soil in the zone could be seen between the freezing and thawing surface. In particular, in soil with many fine particles, a softening of the roadbed usually occurs from frost and thawing actions. The lower bearing capacity is a rapidly progressive the softening of roadbed, and occurred a mud-pumping by repeated loading. In this study, the three kind of sandy soil with contents of fine particles were conducted by directly shear box test with the number of cyclic in freeze-thawing and the water content of soil. Subsequently, the relationship between the shear strength and freeze-thaw cycling time was obtained. The shear strength was decreased with the increase of the freeze-thaw cycling time. A shear stress deterioration of the soil with power function modal is proposal.

Drying Characteristics of Soil by Microwave (Microwave에 의한 흙의 건조 특성 고찰)

  • Cho, Doohwan;Oh, Myounghak;Park, Junboum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.5-12
    • /
    • 2011
  • Water content is one of the significant engineering properties of soil for predicting the behavior of soil matrix. Conventional drying oven can be widely used to obtain the values by drying the soil specimens for 16 to 24 hours at $105^{\circ}C$. Although a number of experimental data has been accumulated for the conventional method of drying soil for water contents, shortcomings of the method are still hard to overcome such as long drying time for in situ use and the difficulty of taking prompt actions against emergency cases. Recently, ASTM and JGS have established microwave oven drying techniques for obtaining water contents to cope with those problems. And the reliability evaluation study has been also performed on the microwave oven drying for water contents. Feasibility study of the microwave oven drying was performed to confirm the process of the technique with Jumunjin sand, kaolinite, bentonite, weathered granite soil, and organic soil. Investigation was also conducted on the factors affecting and enhancing the reliability of the technique.

A Study on Revising the National ITS Architecture (국가 ITS 아키텍쳐 정비방안에 관한 연구)

  • Lee, Sibok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.175-181
    • /
    • 2009
  • Korean government has developed the 1st version of the National ITS Architecture in 1999 and utilized it as the framework for ITS planning, design, and standardization. The National Architecture now needs to be revised to accommodate environmental changes in ITS market and advancement of ITS core technologies. This study evaluates the current version of the architecture and suggests the directions for revision for a new national ITS architecture. The two most popular methodologies for architecture development-the process-oriented approach and the object-oriented approach-were reviewed, and the process-oriented approach was selected for new architecture development. The concept of the national architecture was then newly defined based on evaluation of the existing architecture. The new National ITS Architecture is suggested to be composed of ITS user services, logical architecture, physical architecture, and project architecture. This study must be followed by actual architecture development efforts and supporting policy actions for successful deployment of the new National ITS Architecture.

Comparative Legal Study of Workplace Thermal Environment Management Legislation (작업장 온열환경 관리 법제의 비교법적 고찰)

  • Saemi Shin;Hea Min Lee;Nosung Ki;Sang-Hoon Byeon;SunghoKim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.485-501
    • /
    • 2023
  • Objectives: The Ministry of Employment and Labor has revised the articles regarding management of the thermal environment in the workplace. Currently, two types of regulations exist together with indoor workplaces as the scope of application. It appears that the time has come to discuss regulations. In this study, we aim to identify the feasibility of and problems with the current system through a comparative legal review of workplace thermal environment management laws from around the world. We suggest directions for improving South Korea's workplace thermal environment management laws. Methods: For the several selected countries, we analyzed the classification and content of obligations stipulated for the thermal environment, the presence or absence of specific measures for thermal environment management, legal status and content, and the scope of application of thermal environment provisions and measures. The investigated content was classified according to Zweigelt-Kotz's legal theory. Results: In some countries, employers' obligations for regulating the thermal environment are broadly divided into two types: results and actions. The scope of application of provisions and measures on the thermal environment was extensive, with most of the selected countries targeting general workplaces. Conclusions: In the case of South Korea, restricting and classifying target workplaces and imposing separate obligations to manage a workplace thermal environment goes against global practices, and stipulating legal orders and separate action obligations in guidelines does not conform to the characteristics of South Korea's legal system, meaning that improvement is needed.

Evaluation of horizontal-axis-three-blade wind turbines' behavior under different tornado wind fields

  • Mohamed AbuGazia;Ashraf El Damatty;Kaoshan Dai;Wensheng Lu;Nima Ezami
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.413-423
    • /
    • 2023
  • Wind turbines are usually steel hollow structures that can be vulnerable to dramatic failures due to high-intensity wind (HIW) events, which are classified as a category of localized windstorms that includes tornadoes and downbursts. Analyzing Wind Turbines (WT) under tornadoes is a challenging-to-achieve task because tornadoes are much more complicated wind fields compared with the synoptic boundary layer wind fields, considering that the tornado's 3-D velocity components vary largely in space. As a result, the supporting tower of the wind turbine and the blades will experience different velocities depending on the location of the event. Wind farms also extend over a large area so that the probability of a localized windstorm event impacting one or more towers is relatively high. Therefore, the built-in-house numerical code "HIW-WT" has been developed to predict the straining actions on the blades considering the variability of the tornado's location and the blades' pitch angle. The developed HIWWT numerical model incorporates different wind fields that were generated from developed CFD models. The developed numerical model was applied on an actual wind turbine under three different tornadoes that have different tornadic structure. It is found that F2 tornado wind fields present significant hazard for the wind turbine blades and have to be taken into account if the hazardous impact of this type of unexpected load is to be avoided.

Improving Remedial Measures from Incident Investigations: A Study Across Ghanaian Mines

  • Theophilus Joe-Asare;Eric Stemn
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Background: Learning from incidents for accident prevention is a two-stage process, involving the investigation of past accidents to identify the causal factors, followed by the identification and implementation of remedial measures to address the identified causal factors. The focus of past research has been on the identification of causal factors, with limited focus on the identification and implementation of remedial measures. This research begins to contribute to this gap. The motivation for the research is twofold. First, previous analyses show the recurring nature of accidents within the Ghanaian mining industry, and the causal factors also remain the same. This raises questions on the nature and effectiveness of remedial measures identified to address the causes of past accidents. Secondly, without identifying and implementing remedial measures, the full benefits of accident investigations will not be achieved. Hence, this study aims to assess the nature of remedial measures proposed to address investigation causal factors. Method: The study adopted SMARTER from business studies with the addition of HMW (H - Hierarchical, M - Mapping, and W - Weighting of causal factors) to analyse the recommendations from 500 individual investigation reports across seven different mines in Ghana. Results: The individual and the work environment (79%) were mostly the focused during the search for causes, with limited focus on organisational factors (21%). Forty eight percentage of the recommendations were administrative, focussing on fixing the problem in the immediate affected area or department of the victim(s). Most recommendations (70.4%) were support activities that only enhance the effectiveness of control but do not prevent/mitigate the failure directly. Across all the mines, there was no focus on evaluating the performance of remedial measures after their implementation. Conclusion: Identifying sharp-end causes leads to proposing weak recommendations which fail to address latent organisational conditions. The study proposed a guide for effective planning and implementation of remedial actions.

Alleviation of PM2.5-associated Risk of Daily Influenza Hospitalization by COVID-19 Lockdown Measures: A Time-series Study in Northeastern Thailand

  • Benjawan Roudreo;Sitthichok Puangthongthub
    • Journal of Preventive Medicine and Public Health
    • /
    • v.57 no.2
    • /
    • pp.108-119
    • /
    • 2024
  • Objectives: Abrupt changes in air pollution levels associated with the coronavirus disease 2019 (COVID-19) outbreak present a unique opportunity to evaluate the effects of air pollution on influenza risk, at a time when emission sources were less active and personal hygiene practices were more rigorous. Methods: This time-series study examined the relationship between influenza cases (n=22 874) and air pollutant concentrations from 2018 to 2021, comparing the timeframes before and during the COVID-19 pandemic in and around Thailand's Khon Kaen province. Poisson generalized additive modeling was employed to estimate the relative risk of hospitalization for influenza associated with air pollutant levels. Results: Before the COVID-19 outbreak, both the average daily number of influenza hospitalizations and particulate matter with an aerodynamic diameter of 2.5 ㎛ or less (PM2.5) concentration exceeded those later observed during the pandemic (p<0.001). In single-pollutant models, a 10 ㎍/m3 increase in PM2.5 before COVID-19 was significantly associated with increased influenza risk upon exposure to cumulative-day lags, specifically lags 0-5 and 0-6 (p<0.01). After adjustment for co-pollutants, PM2.5 demonstrated the strongest effects at lags 0 and 4, with elevated risk found across all cumulative-day lags (0-1, 0-2, 0-3, 0-4, 0-5, and 0-6) and significantly greater risk in the winter and summer at lag 0-5 (p<0.01). However, the PM2.5 level was not significantly associated with influenza risk during the COVID-19 outbreak. Conclusions: Lockdown measures implemented during the COVID-19 pandemic could mitigate the risk of PM2.5-induced influenza. Effective regulatory actions in the context of COVID-19 may decrease PM2.5 emissions and improve hygiene practices, thereby reducing influenza hospitalizations.

The City Ecological Soundness Index Development Based on the City Biodiversity Index (CBI) and Korean City Characteristics (우리나라 도시 특성을 고려한 도시생물다양성지수 적용성 검토 및 도시의 생태적 건전성 평가지표 개발)

  • Yun, Hyerngdu;Lee, Jangho;Choi, Intae;Park, Seokcheol;Han, Bongho;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.442-456
    • /
    • 2016
  • The Secretariat of the Convention on Biological Diversity (SCBD) encourages the use of the City Biodiversity Index (CBI) as a monitoring tool to assist local authorities in evaluating their progress in urban biodiversity conservation. The CBI has been applied to conserve the city biodiversity. This study has developed the City Ecological Soundness Index (CESI) based on the CBI and Korean city characteristics. The CESI includes total of 12 indicators grouped in three categories, which are 'biodiversity,' 'ecosystem services' and 'governance and management.' 85 cities in Korea were classified according to the city size and type. 18 cities have applicable biotope map, which were analyzed in the CESI pilot study. The CESI will contribute to collect and manage biodiversity data systematically and to promote biodiversity-related actions.

Actions to Expand the Use of Geospatial Data and Satellite Imagery for Improved Estimation of Carbon Sinks in the LULUCF Sector

  • Ji-Ae Jung;Yoonrang Cho;Sunmin Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.203-217
    • /
    • 2024
  • The Land Use, Land-Use Change and Forestry (LULUCF) sector of the National Greenhouse Gas Inventory is crucial for obtaining data on carbon sinks, necessitating accurate estimations. This study analyzes cases of countries applying the LULUCF sector at the Tier 3 level to propose enhanced methodologies for carbon sink estimation. In nations like Japan and Western Europe, satellite spatial information such as SPOT, Landsat, and Light Detection and Ranging (LiDAR)is used alongside national statistical data to estimate LULUCF. However, in Korea, the lack of land use change data and the absence of integrated management by category, measurement is predominantly conducted at the Tier 1 level, except for certain forest areas. In this study, Space-borne LiDAR Global Ecosystem Dynamics Investigation (GEDI) was used to calculate forest canopy heights based on Relative Height 100 (RH100) in the cities of Icheon, Gwangju, and Yeoju in Gyeonggi Province, Korea. These canopy heights were compared with the 1:5,000 scale forest maps used for the National Inventory Report in Korea. The GEDI data showed a maximum canopy height of 29.44 meters (m) in Gwangju, contrasting with the forest type maps that reported heights up to 34 m in Gwangju and parts of Icheon, and a minimum of 2 m in Icheon. Additionally, this study utilized Ordinary Least Squares(OLS)regression analysis to compare GEDI RH100 data with forest stand heights at the eup-myeon-dong level using ArcGIS, revealing Standard Deviations (SDs)ranging from -1.4 to 2.5, indicating significant regional variability. Areas where forest stand heights were higher than GEDI measurements showed greater variability, whereas locations with lower tree heights from forest type maps demonstrated lower SDs. The discrepancies between GEDI and actual measurements suggest the potential for improving height estimations through the application of high-resolution remote sensing techniques. To enhance future assessments of forest biomass and carbon storage at the Tier 3 level, high-resolution, reliable data are essential. These findings underscore the urgent need for integrating high-resolution, spatially explicit LiDAR data to enhance the accuracy of carbon sink calculations in Korea.