• Title/Summary/Keyword: environmental DNA (eDNA)

Search Result 229, Processing Time 0.036 seconds

Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

  • Baek, Kwang-Hyun;Skinner, Daniel Z.
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese superoxide dismutase (MnSOD) gene isolated from wheat. Although all QC 871 transformants grown at $37^{\circ}C$ expressed mRNA of MnSOD variants, only MnSOD2 transformant had functional SOD activity. MnSOD3 expressed active protein when grown at $22^{\circ}C$, however, MnSOD1 did not express functional protein at any growing and induction conditions. The sequence comparison of the wheat MnSOD variants revealed that the only amino acid difference between the sequence MnSOD2 and sequences MnSOD1 and 3 is phenylalanine/serine at position 58 amino acid. We made MnSOD2S58F gene, which was made by altering the phenylalaine to serine at position 58 in MnSOD2. The expressed MnSOD2S58F protein had functional SOD activity, even at higher levels than the original MnSOD2 at all observed temperatures. These data suggest that amino acid variation can result in highly active forms of MnSOD and the MnSOD2S58F gene can be an ideal target used for transforming crops to increase tolerance to environmental stresses.

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu;Shen, Rongrong;Zhang, Xiu;Wang, Quanxi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.579-586
    • /
    • 2010
  • A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

Differentiations between the viable but nonculturable (VBNC) or dead state of Edwardsiella tarda by ethidium monoazide (EMA) treatment-PCR (Ethidium monoazide (EMA) - PCR 법을 이용한 비배양성 생존 상태(VBNC)의 Edwardsiella tarda 검출)

  • Kang, Nam I;Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.31 no.2
    • /
    • pp.93-99
    • /
    • 2018
  • Edwardsiella tarda predominantly causes edwardsiellosis in fish at high temperature, but is rarely isolated from water when water temperature is low. However, E. tarda is viable but nonculturable (VBNC) in low water temperature, but it can be revived when water temperature rises and cause disease to fish. Therefore, in order to prevent disease, it is very important to identify pathogens that are in the VBNC state in environmental water. In this study, E. tarda cells in the VBNC state were detected by the ethidium monoazide (EMA)-PCR method using the low-temperature oligotrophic sea water microcosm obtained by inoculation of E. tarda at a concentration of $10^8CFU/ml$. In order to distinguish between live and dead bacteria in E. tarda, each sample was treated with EMA at different concentrations, photoactivated with a 500 W halogen lamp, and PCR was performed with E. tarda specific primer. At the concentration of $10^7CFU/ml$ bacterium, DNA amplification was observed only in the live cells when treated with $60{\mu}g/ml$ of EMA, and smaller amounts of live cells could be distinguished from dead cells by adjusting the EMA concentration. In addition, the VBNC cells of E. tarda in the oligotrophic low temperature seawater microcosm were estimated to be in the range of $10^4{\sim}10^5CFU/ml$ by EMA-PCR. Therefore, it is possible to detect VBNC cells that will act as potential pathogens in environmental water using EMA-PCR method, and quantitative confirmation using concentration change is also possible.

A Protocol of Ludox Treatment for Physiological and Molecular Biological Research of Freshwater Cyanobacteria (퇴적층 남조류 휴면세포의 생리적-분자생물학적 연구를 위한 Ludox 처리법)

  • Keonhee Kim;Kyeong-eun Yoo;Hye-in Ho;Chaehong Park;Hyunjin Kim;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.94-103
    • /
    • 2023
  • Cyanobacterial resting cells, such as akinetes, are important seed cells for cyanobacteria's early development and bloom. Due to their importance, various methods have been attempted to isolate resting cells present in the sediment. Ludox is a solution mainly used for cell separation in marine sediments, but finding an accurate method for use in freshwater is difficult. This study compared the two most commonly used Ludox methods (direct sediment treatment and sediment distilled water suspension treatment). Furthermore, we proposed a highly efficient method for isolating cyanobacterial resting cells and eDNA amplification from freshwater sediments. Most of the resting cells found in the sediment were akinete to the Nostocale and were similar to those of Dolichospermum, Cylindrospermum, and Aphanizomenon. Twenty times more akinetes were found in the conical tube column using the sediment that had no treatment than in the sample treated by suspending the sediment in distilled water. Akinete separated through Ludox were mainly spread over the upper and lower layers in the column rather than concentrated at a specific depth in the column layer. The mibC, Geo, and 16S rDNA genes were successfully amplified using the sediment directly in the sample. However, the amplification products of all genes were not found in the sample in which the sediment was suspended in distilled water. Therefore, 5 g to 10 g of sediment is used without pretreatment when isolating cyanobacterial resting cells from freshwater sediment. Cell isolation and gene amplification efficiency are high when four times the volume of Ludox is added. The Ludox treatment method presented in this study isolates cyanobacterial resting cells in freshwater sediment, and the same efficiency may not appear in other biotas. Therefore, to apply Ludox to the separation of other biotas, it is necessary to conduct a pre-experiment to determine the sediment pretreatment method and the water layer where the target organism exists.

Selection of Molecular Biomarkers Relevant to Abnormal Behaviors of Medaka Fish (Oryzias latipes) Caused by Diazinon (다이아지논에 의해 야기된 송사리의 이상행동 연관 분자생물지표의 선발)

  • Koh, Sung-Cheol;Shin, Sung-Woo;Cho, Hyun-Duk;Chon, Tae-Soo;Kim, Jong-Sang;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.321-332
    • /
    • 2009
  • 본 연구의 목적은 다이아지논(Diazinon; O, O-diethyl O-[6-methyl-2 (1-methylethyl)-4-pyrimidinyl] phosphorothioate)에 노출된 모델 생물체(송사리)의 행동변화와 관련된 분자생물학적 기전 규명을 통하여 비정상적 행동의 모니터링을 위한 생물지표(biomarker)를 개발하는데 있다. 이를 위해 우선 suppression subtractive hybridization (SSH) 및 DNA microarray 기법을 활용하여 다양한 유전자를 스크리닝하였다. 다이아지논에 노출시킨 송사리에서 발현의 차이가 나는 상향 조절된 유전자 97개 (알려지지 않은 유전자 27개 포함)와 하향 조절된 유전자 99개 (알려지지 않은 유전자 60개 포함)를 동정 하였고 이들 중 이상행동과 관련되는 것으로 보이는 유전자 10개 (상향조절 5개, 하향조절 5개)를 선발하였다. 이들 중에서 primer 제작이 잘된 beta-1, Orla C3-1, parvalbumin 및 apolipoprotein E을 선발하여 그 유전자 발현을 real-time PCR 기법을 사용하여 정량적으로 모니터링 하였다. Orla C3-1, parvalbumin 및 apolipoprotein E는 고농도의 다이아지논 처리(1000 ppb; 24 h)에서 그 발현이 억제됨이 관찰되었다. 다이아지논 처리 시 신경질환 (알츠하이머 병 및 다운신드롬)에 관련된 apolipoprotein E와 근육세포의 유연화에 작용하는 parvalbumin 등의 발현억제는 송사리의 인지능력 교란 및 근육세포의 경직 등을 각각 유도하여 송사리의 비정상적 행동을 야기하는 것으로 판단되었다. 따라서 이들 생물지표는 신경독성물질에 의한 송사리 및 기타 어류의 이상행동의 변화의 감지에 활용될 수 있을 것으로 사료된다.

Construction of an Escherichia-Pseudomonas Shuttle Vector Containing an Aminoglycoside Phosphotransferase Gene and a lacZ' Gene for $\alpha$-Complementation

  • Lee, Bheong-Uk;Hong, Ja-Heon;Kahng, Hyung-Yeel;Oh, Kye-Heon
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.671-673
    • /
    • 2006
  • A new 4.87 kb Escherichia-Pseudomonas shuttle vector has been constructed by inserting a 1.27 kb DNA fragment with a replication origin of a Pseudomonas plasmid pRO1614 into the 3.6 kb E. coli plasmid pBGS18. This vector, designated pJH1, contains an aminogly-coside phosphotransferase gene (aph) from Tn903, a lacZ' gene for $\alpha$-complementation and a versatile multiple cloning site possessing unique restriction sites for EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, SalI, BspMI, PstI, SphI, and HindIII. When pJH1 was transformed into E. coli DHS${\alpha}$ and into P. putida HK-6, it was episomally and stably maintained in both strains. In addition, the enhanced green fluorescent protein (EGFP) gene which was transcriptionally cloned into pJH1 rendered E. coli cells fluorescence when its transformants were illuminated at 488 nm.

Expression of Recombinant Human Cytochrome P450 1A2 in Escherichia coli Bacterial Mutagenicity Tester Strain

  • Chun, Young-Jin
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.305-309
    • /
    • 1998
  • Human cytochrome P450 1A2 is one of the major cytochrome P450s in human liver. It is known to be capable of activating a number of carcinogens such as arylamines and heterocyclic amines. In order to develop the new bacterial mutagenicity test system with human P450, a full length of human P450 1A2 cDNA inserted into pCW bacterial expression vector was introduced to Escherichia coli WP2 uvrA strain which is a well-known E. coli strain for bacterial reverse mutagenicity assay. Expressed human P450 1A2 showed typical P450 hemoprotein spectra. Maximum expression was achieved at 48 hrs after incubating at $30^{\circ}C$ in terrific broth containing ampicillin, IPTG and other supplements. High level expression of P450 1A2 in E. coli WP2 uvrA membranes was determined in SDS-PAGE. The well-known mutagens 2-aminoanthracene and MElQ increased the revertant colonies of E. coli WP2 uvrA expressing human P450 1A2 without an exogenous rat hepatic post-mitochondrial supernatant (S9 fraction) in a dose-dependent manner. The results show that the functional expression of human P450 in bacterial mutagenicity tester strain will provide a useful tool for studying the mechanism of the mutagenesis and carcinogenesis of new drugs and environmental chemicals.

  • PDF

Isolation and Application of Feather-Degrading Bacteria for Development of Environment-Friendly Biofertilizer (환경친화적 미생물 비료 개발을 위한 우모분해 세균의 분리 및 응용)

  • Woo, Eun-Ok;Kim, Min-Ju;Ryu, Eun-Youn;Park, Geun-Tae;Lee, Chung-Yeol;Son, Hong-Joo;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1103-1109
    • /
    • 2007
  • The aim of this study was to isolate mesophilic chicken feather-degrading bacteria and to evaluate feather hydrolysate as alternative biofertilizer. Isolate RS7 was isolated from compost and identified as Bacillus pumilus according to API analysis and l6S rDNA sequencing analysis. Chicken feathers were completely degraded after 5 days of cultivation at $30^{\circ}C$. Feather hydrolysate treated by B. pumilius RS7 positively influenced Helianthus sannuus L. (sunflower) growth (e.g. growth rate, number and dry weight of leave, and flowering rate). These results suggest that feather hydrolysate prepared using B. pumilius RS7 could successfully be used as alternative biofertilizer, thereby reducing the environmental impact of feather waste from the poultry industry.

Molecular Characterization of a ${\beta}$-1,4-Endoglucanase Gene from Bacillus subtilis H12

  • Oh, Jin-Hwan;Cha, Jeong-Ah;Yoon, Min-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • A ${\beta}$-1,4-endoglucanase gene from Bacillus subtilis H12 was cloned into Escherichia coli JM109 (pBC8) and sequenced. The endoglucanase gene with an insert DNA of 2.5 kb possessed an open reading frame of 1,500 bp encoding a mature protein of 499 amino acids with a calculated molecular mass of 55 kDa. The deduced amino acid sequence showed similarity to those of the known neutral cellulase genes of B. subtilis PAP115 (99.2%) and BSE616 (97.8%), as well as the alkaline gene of Bacillus sp. N4 (55.1%). The endoglucanase activity expressed by E. coli (pBC8) was localized in the periplasmic fraction (80%) and the cytoplasmic fraction (20%). An endoglucanase was purified from the periplasmic fraction by performing gel filtration and anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 31 kDa by SDS-PAGE, and the maximum activity occurred at pH 7 and $40^{\circ}C$. The enzyme easily hydrolyzed soluble substrates such as carboxymethyl cellulose and barely ${\beta}$-glucan, whereas the sigmacell and xylan, the known insoluble substrates, were not entirely hydrolyzed.

Genetic and Environmental Deterrents to Breeding for Disease Resistance in Dairy Cattle

  • Lin, C.Y.;Aggrey, S.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1247-1253
    • /
    • 2003
  • Selection for increased milk production in dairy cows has often resulted in a higher incidence of disease and thus incurred a greater health costs. Considerable interests have been shown in breeding dairy cattle for disease resistance in recent years. This paper discusses the limitations of breeding dairy cattle for genetic resistance in six parts: 1) complexity of disease resistance, 2) difficulty in estimating genetic parameters for planning breeding programs against disease, 3) undesirable relationship between production traits and disease, 4) disease as affected by recessive genes, 5) new mutation of the pathogens, and 6) variable environmental factors. The hidden problems of estimating genetic and phenotypic parameters involving disease incidence were examined in terms of categorical nature, non-independence, heterogeneity of error variance, non-randomness, and automatic relationship between disease and production traits. In light of these limitations, the prospect for increasing genetic resistance by conventional breeding methods would not be so bright as we like. Since the phenomenon of disease is the result of a joint interaction among host genotype, pathogen genotype and environment, it becomes essential to adopt an integrated approach of increasing genetic resistance of the host animals, manipulating the pathogen genotypes, developing effective vaccines and drugs, and improving the environmental conditions. The advances in DNA-based technology show considerable promise in directly manipulating host and pathogen genomes for genetic resistance and producing vaccines and drugs for prevention and medication to promote the wellbeing of the animals.