• Title/Summary/Keyword: environment condition

Search Result 6,759, Processing Time 0.042 seconds

Development of Detailed Design Automation Technology for AI-based Exterior Wall Panels and its Backframes

  • Kim, HaYoung;Yi, June-Seong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1249-1249
    • /
    • 2022
  • The facade, an exterior material of a building, is one of the crucial factors that determine its morphological identity and its functional levels, such as energy performance, earthquake and fire resistance. However, regardless of the type of exterior materials, huge property and human casualties are continuing due to frequent exterior materials dropout accidents. The quality of the building envelope depends on the detailed design and is closely related to the back frames that support the exterior material. Detailed design means the creation of a shop drawing, which is the stage of developing the basic design to a level where construction is possible by specifying the exact necessary details. However, due to chronic problems in the construction industry, such as reducing working hours and the lack of design personnel, detailed design is not being appropriately implemented. Considering these characteristics, it is necessary to develop the detailed design process of exterior materials and works based on the domain-expert knowledge of the construction industry using artificial intelligence (AI). Therefore, this study aims to establish a detailed design automation algorithm for AI-based condition-responsive exterior wall panels and their back frames. The scope of the study is limited to "detailed design" performed based on the working drawings during the exterior work process and "stone panels" among exterior materials. First, working-level data on stone works is collected to analyze the existing detailed design process. After that, design parameters are derived by analyzing factors that affect the design of the building's exterior wall and back frames, such as structure, floor height, wind load, lift limit, and transportation elements. The relational expression between the derived parameters is derived, and it is algorithmized to implement a rule-based AI design. These algorithms can be applied to detailed designs based on 3D BIM to automatically calculate quantity and unit price. The next goal is to derive the iterative elements that occur in the process and implement a robotic process automation (RPA)-based system to link the entire "Detailed design-Quality calculation-Order process." This study is significant because it expands the design automation research, which has been rather limited to basic and implemented design, to the detailed design area at the beginning of the construction execution and increases the productivity by using AI. In addition, it can help fundamentally improve the working environment of the construction industry through the development of direct and applicable technologies to practice.

  • PDF

Varietal Differences on Growth Characteristics of Direct-sown Rice under No-tillage Paddy Field (남부지방의 벼 무경운 직파재배에서 품종간 생육특성 비교)

  • Hong, Kwang-Pyo;Kim, Jang-Yong;Kang, Dong-Ju;Shin, Won-Kyo;Choe, Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.5
    • /
    • pp.551-557
    • /
    • 1996
  • In order to establish a labour-saved and environment friendly paddy rice system in southern Korea, no-tillage paddy system was proposed and investigated from 1992 to 1993. Basically this system includes a complete return of crop residules into the soil, and zero-tillage. In an effort to minimize labour requirement in rice farming, several cultivars were directly sown and grown under the system and the characteristics of the growth and yield potential of the cultivars were compared with those grown in an ordinary paddy soil. Joryeongbyeo, Dongjinbyeo, Daeyabyeo and Calose rices showed high level of seedling establishment in the no-tillage padddy system. However, the value was significantly lower than in those of the cultivars direct-sown in an ordinary tillage paddy condition. The rice direct-sown and grown under the no-tillage paddy system showed significantly decreased number of tillers per square meter and plant height, but increased ripened grains. The lodging-related characteristics of rice plant, such as band breaking weight, the length of top 3rd ∼4th internodes, the height of weight center, and lodging index, were observed positive aspects in cultivars such as Hwasungbyeo, Hwayongbyeo, Joryeongbyeo, Calose and Calose 76 and being considered adaptable to direct-sown under the no-tillage paddy system.

  • PDF

Estimation of Settlement on the Crest of CFRD Subjected to Earthquake Loading Using Sensitivity Analysis (민감도분석을 통한 지진하중을 받는 CFRD 정상부 침하량 예측)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, quantitative sensitivity analysis on rockfill material influencing the dam crest settlement of CFRD (Concrete-Faced Rockfill Dam) subjected to earthquake loading was carried out. The purpose of this study is to indicate the most important input parameter from the results of sensitivity analysis, to show the quantitative variation of settlement at the crest of CFR type dam during earthquake with this input parameter, and to recommend the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading. The statistic characteristics of rockfill parameters which were obtained from large triaxial tests were evaluated. The total 108 dynamic numerical analyses (2 input earthquake, 2 magnitudes for each earthquake, 27 rockfill material property combinations) on CFRD were conducted. The global sensitivity analysis was carried out using the results of numerical analysis. From the sensitivity analysis, It was found that the crest settlement of the CFRD subjected to earthquake was absolutely affected by the shear modulus of rockfill material irrespective of the input earthquakes and the magnitude of input acceleration. On the contrary, it was found that the effect of cohesion and friction angle of rockfill was negligible. From the results of sensitivity analysis and numerical analysis, the approximate estimation method of the settlement on the crest of CFRD subjected to earthquake loading was recommended on condition that the rockfill shear modulus and simple dam information was known.

Loneliness as a Risk Factor for Suicidal Ideation and Depressive Mood Among Korean Adolescents in 2020-2021 (한국청소년의 자살생각 및 우울감의 위험요인으로서의 외로움, 2020-2021년)

  • Inmyung Song
    • Journal of Industrial Convergence
    • /
    • v.21 no.5
    • /
    • pp.77-85
    • /
    • 2023
  • Suicide is the leading cause of death among Korean adolescents. There is a growing interest in the role of loneliness as a risk factor for suicide ideation and depressive symptoms. However, little is known in the Korean context. This study analyzed a total of 109,796 respondents from the Korea Youth Health Behavior Survey in 2020 and 2021. Multiple logistic regression models were implemented to test the association between loneliness and either of suicidal ideation and depressive mood. Covariates included demographic characteristics, school enrolled, household income, living arrangement, self-rated health, and the number of times treated for violence. Adjusted odd ratio (OR) and 95% confidence intervals (CI) were computed. 12.0% of adolescents reported to have felt lonely frequently and 3.0% always. 11.8% and 26.0% had suicidal ideation and depressive mood, respectively. The prevalence of suicidal ideation was higher in the always-lonely adolescents (52.6%) than in the frequently-lonely adolescents (35.1%). The always-lonely adolescents were nearly 30 times more likely to have suicidal ideation (OR=30.7; 95% CI, 27.1 - 34.8) and to feel depressed (OR=32.5; 95% CI, 29.2 - 36.4) than adolescents who felt never lonely. In conclusion, Loneliness was a major risk factor for suicidal ideation and depressive mood among Korean adolescents. Monitoring and addressing the condition of loneliness may help reduce suicidal ideation and depressive mood.

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

A Study of Activation Approaches by the on the Analysis Problems and Success Cases of Traditional Markets (재래시장의 문제점과 사례 분석을 통한 활성화 방안)

  • Lee, Jae-Han;Kim, Kyu-Won;Yu, Jong-Pil
    • The Korean Journal of Franchise Management
    • /
    • v.1 no.1
    • /
    • pp.19-42
    • /
    • 2010
  • Since circulation market whole surface opening, traditional market is real condition that is looked away more gradually to consumer as reasons of international retail firms and domestic enterprise firms to enter distribution industry, internet mail order rapid increase by information-oriented society, the pursuit of upgradation and normalization by elevation of income level and consumption pattern change that consideration convenience with young consumers as the central figure. Therefore, the purpose of this study is to analyze stagnation cause of traditional market and problem within a change of new distribution environment, and to develop new approaches for dealing with domestic traditional market relationship prompting competition through activation example analysis of foreign traditional market and domestic traditional market. The result of the study indicated that there are a lot of cases that are begun by a few's merchant with leadership that has been will which is strong in activation in beginning in market's occasion that succeed in activation. In particular, software side such as operational efficiency or marketing expertise strengthening of management is that effect is high relatively than hardware side market activation. Also essential to the settlement of credit transactions using credit cards is important for expanding the effort, for the expansion of credit card merchant credit card advantage and raise awareness among traders about the expected effects is needed. Though these study finding submits plan that create market ecosystem so that many consumers may become place that could visit naturally and create pleasure and convenience, and time, monetary, psychological value of shopping to traditional market, there is sense.

A Design of Ultra-low Noise LDO Regulator for Low Voltage MEMS Microphones (저전압 MEMS 마이크로폰용 초저잡음 LDO 레귤레이터 설계)

  • Moon, Jong-il;Nam, Chul;Yoo, Sang-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.630-633
    • /
    • 2021
  • Microphones can convert received voice signals to electric signals. They have been widely used in various industries such as radios, smart devices and vehicles. Recently, the demands for small size and high sensitive microphones are increased according to the minimization of wireless earphone with the development of smart phone. A MEMS system is a good candidate for an ultra-small size microphone of a next generation and a read out IC for high sensitive MEMS sensor is researched from many industries and academies. Since the microphone system has a high sensitivity from environment noise and electric system noise, the system requires a low noise power supply and some low noise design techniques. In this paper, a low noise LDO is presented for small size MEMS microphone systems. The input supply voltage of the LDO is 1.5-3.6V, and the output voltage is 1.3V. Then, it can support to 5mA in the light load condition. The integrated output noise of proposed LDO form 20Hz to 20kHz is about 1.9uV. These post layout simulation results are performed with TSMC 0.18um CMOS technology and the size of layout is 325㎛ × 165㎛.

  • PDF

Design of Body Movement Program with the Application of Feldenkrais Method® - Foucing on Parkinson's Disease (펠든크라이스 기법®을 적용한 신체 움직임 프로그램 설계 - 파킨슨병 환자를 중심으로)

  • So Jung Park
    • Trans-
    • /
    • v.14
    • /
    • pp.35-63
    • /
    • 2023
  • Parkinson's disease is a degenerative neurological disease that affects even basic daily life movements due to impairment of body function caused by a lack of dopamine, which is charge of the body movement. Presently, it is hard to cure Parkinson's disease entirely with medical technology, so movement therapy as a solution to delay and prevent disease is getting more attention. Therefore, this study aims at desiging and disseminating a body movement program that concentrates on individual self-care and balacing the state of body and mind by applying the Feldenkrais Method® to patients with Parkinson's disease. The Feldenkrais Method® is a mind-body perceptual learning method using body movements. It is a methodology that re-educates the nervous system by connecting the brain and behavior as a function of neuroplasticity. In this study, the body movement program developed and verified by the researcher was modified and supplemented with a focus on the self-awareness of the Feldenkrais Method®. A 24-session physical exercise program was composed of 5 stages to improve the self-management ability of patients with Parkinson's disease. The stages include self-awareness, self-observation, self-organization, self-control, and self-care. The overall changes recognize one's condition and improve one's ability to detect modifications in the internal sense and external environment. In conclusion, the body movement program improves the body movement program improves mental and physical functions and self-care for Parkinson's disease patients through the Feldenkrais method. The availability of the program's on-site applicability remains a follow-up task. Furthermore, it is necessary to establish a systematic structure to spread it more widely through convergent cooperation with the scientific field applied with metaverse as a reference for the wellness of the elderly.

Design of Algorithm for Collision Avoidance with VRU Using V2X Information (V2X 정보를 활용한 VRU 충돌 회피 알고리즘 개발)

  • Jang, Seono;Lee, Sangyeop;Park, Kihong;Shin, Jaekon;Eom, Sungwook;Cho, Sungwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.240-257
    • /
    • 2022
  • Autonomous vehicles use various local sensors such as camera, radar, and lidar to perceive the surrounding environment. However, it is difficult to predict the movement of vulnerable road users using only local sensors that are subject to limits in cognitive range. This is true especially when these users are blocked from view by obstacles. Hence, this paper developed an algorithm for collision avoidance with VRU using V2X information. The main purpose of this collision avoidance system is to overcome the limitations of the local sensors. The algorithm first evaluates the risk of collision, based on the current driving condition and the V2X information of the VRU. Subsequently, the algorithm takes one of four evasive actions; steering, braking, steering after braking, and braking after steering. A simulation was performed under various conditions. The results of the simulation confirmed that the algorithm could significantly improve the performance of the collision avoidance system while securing vehicle stability during evasive maneuvers.