• Title/Summary/Keyword: environment condition

Search Result 6,761, Processing Time 0.036 seconds

Struvite Crystallization of Swine Wastewater using Bittern (간수를 이용한 축산폐수의 struvite 결정화)

  • Ryu, Hong-Duck;Kim, Tae-Su;Park, Hyoung-Soon;Lee, Sang-Ill
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.138-143
    • /
    • 2007
  • This study goes in for the observation of the characteristics of nitrogen removal from swine wastewater by struvite crystallization. In addition, the struvite formation potential in supernatants after struvite crystallization was investigated. In the study for nitrogen removal by struvite crystallization, the effects of pH and molar ratio of magnesium (Mg) injected using bittern as Mg source were investigated. Also, the potential of struvite formation in the supernatant with amount of Mg added was carefully observed. As the results, the optimum pH in the removal of nitrogen was 8.8 and sludge volume was increased as pH was raised from 7 to 12 under the condition that the molar ratio of $Mg^{2+}$ to ${NH_4}^+$-N to ${PO_4}^{3-}$-P was 1:1:1. An optimum removal efficiency of ammonia-N was observed at 1 molar ratio of Mg to ${NH_4}^+$-N, showing no further increase at over 1 molar ratio and dramatical deterioration at under 1 molar ratio. However, the sludge volume was increased by increasing the molar ratio of Mg. In the experiments for the potential of struvite formation in the supernatants, initial -log([$Mg^{2+}$][${NH_4}^+$][${PO_4}^{3-}$]) value was much lower than $pK_{sp}$ and gradually reached $pK_{sp}$ at 2 days, as the molar ratio of Mg increased over 1.2. At 31 days, -log([$Mg^{2+}$][${NH_4}^+$][${PO_4}^{3-}$]) value was returned to the initial value. In addition, the supernatants had a potential precipitation of hydroxylapatite due to calcium contained in bittern, $K_2Mg(SO_4)_3$ and $K_3Na(SO_4)_2$ resulting from the decrease of sodium and potassium in supernatants formed after struvite crystallization as times go by. Based on the results, it appears that some retention time and proper dosage of Mg may be needed for the prevention of scale in pipe line.

Synthesis and Characterization of Interfacial Properties of a Cationic Surfactant Having Three Hydroxyl Groups (세 개의 히드록실기를 가진 양이온 계면활성제 합성 및 계면 특성에 관한 연구)

  • Lee, Byung Min;Kim, Ji-Hyun;Kim, Sung Soo;Lim, Jong Choo
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.433-439
    • /
    • 2012
  • In this study, a cationic surfactant BHMAS (N,N-bis-(3'-n-dodecyloxy-2'-hydroxypropyl)-N-methyl-2-hydroxyethylammonium methyl sulfate) having two lauryl and three hydroxyl groups was synthesized by the reaction of n-dodecyl glycidyl ether and 2-aminoethanol followed by the quarternization with dimethyl sulfate. The structure of the product was elucidated by $^{1}H-NMR$ and FT-IR. The CMC (critical micelle concentration) and surface tension of BHMAS at CMC condition were found to be $9.12\;{\times}\;10^{-4}$ mol/L and 28.71 mN/m respectively. Dynamic surface tension measurements using a maximum bubble pressure tensiometer indicated that a relatively long time was required to saturate the interface between air and aqueous surfactant solution. The interfacial tension measured between 1 wt% surfactant solution and n-decane reached an equilibrium value of 0.045 mN/m in 5 min. The adsorption capacity of the synthesized surfactant was observed to be excellent, which suggests that the surfactant can be used as a softening agent during a laundry process.

Variations of Annual Evapotranspiration nnd Discharge in Three Different Forest-Type Catchments, Gyeonggido, South Korea (임상이 다른 3개 산림소유역의 장기 증발산량과 유출량의 변화)

  • Kim Kyong-Ha;Jeong Yong-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.174-182
    • /
    • 2006
  • This study was to clarify the effects of forest stand changes on hydrological components of evapotranspiration and discharge. The forest-hydrological experimental stations in Gwangneung and Yangju, Gyeonggido near metropolitan Seoul have been operated by the Korea Forest Research Institute since 1979 to clarify the effects of forest types and practices on the water resources and nutrient cycling and soil loss. The hydrological regime of the forested catchments may change as forests develop. The ranges of change may be different depending on forest types. Evapotranspiration can be estimated to 679mm, 580mm and 368mm in planted young coniferous (PYC), natural old-growth deciduous (NOD) and rehabilitated young mixed (RYM), respectively. The slope of the discharge-duration curve shows the capacity of discharge control in a specific catchment. The slope tended to be steeper in RYM than NOD, the better forest condition. The slope in RYM became more gentle as the forest stand developed. Forests can modulate peak flows through interception, evapotranspiration and soil storage opportunity. PYC and RYM showed 100 and 50mm of threshold rainfall for modulating peak flows, respectively. The deciduous forest did not represent sudden changes of peak flow rates to rainfall, even 200 mm rainfall Forest development in PYC may play an important role in modulation of peak flows because peak flow rates reduced after 10 years.

A Study on the Elastic Restoration Characteristics According to Environmental Resistance Condition of Structural Sealing Finishing Materials (구조용 실링마감재의 내환경 조건에 따른 탄성복원 특성 연구)

  • Jang, Pil-Sung;Kang, Dong-Won;Hong, Soon-Gu;Kim, Young-Geun;Kim, Sung-Rae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Recently, The use of the curtain wall method is increasing in construction. The curtain wall construction is widely applied to the exterior wall of the building for shortening construction period and economical efficiency. However, the replacement of deterioration of the weather resistance and structural behavior of the sealing material connecting the curtain wall method and the glass frame is necessary for introduction of the stable curtain wall method and quality improvement in accordance with KS F 4910 standard. In this study, the elastic restoring force test was performed in the external environment. In this study, the deterioration of the sealant was evaluated for structural sealants. In Korea, studies on the variable displacement behavior of structural sealants are lacked. In this study, the reproduced results in laboratory conditions are compared with the deteriorating conditions exposed to the external environment, and they are reflected in the design of sealing materials in the future. According to the results of the study, it was confirmed that the existing structure sealant meets the quality standard of KS F 4910, but in the conditions performed in this study, adhesion failure of the specimen and cracking of the surface occurred. Especially, in the weather resistance test, it is necessary to evaluate the long-term durability performance of the structural sealant used in the curtain wall method by checking the insoluble state of all the test pieces. Therefore, in order to apply a conventional structural sealant to the site, it is necessary to introduce another durability performance evaluation.

Evaluation of Affecting Factors on Formation of Oil-Mineral Aggregates for Stranded Oil on Intertidal Flat (연안 조간대에 표착한 유출유의 OMA 형성 영향인자의 평가)

  • Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.151-156
    • /
    • 2009
  • The purpose of this study is to evaluate the affecting factors on Oil-Mineral Aggregates(OMA) for stranded oil on intertidal flat, because the OMA formation enhances the oil dispersion and biodegradation rates. We choose the affecting factors such as spilled oil concentrations(50, 100, 200, 300, 400, 500 mg/L), mineral concentration(100, 200, 500, 1,000, 2,000, 4,000 mg/L), salinity(10, 20, 30, 40 psu), shaking time(1, 2, 4, 8, 12, 24 hr) and applied dispersant volume(0, 5, 10, 15, 20%). Major conclusions derived from this study are as follows. It was observed that the kaolinite interacts three times strongly with crude oil than quartz. OMA formation was enhanced with increasing of spilled oil concentrations, whereas the increase of salinity rarely affected the OMA formation. The shaking time for OMA formation affected positively with kaolinite, but quartz was irrespective the shaking time. The applied dispersant enhanced the OMA formation by 13% in kaolinite and 56% in quartz experimental condition.

  • PDF

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients (피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교)

  • Park, Hoon Cheol;Truong, Quang-Tri;Phan, Le-Quang;Ko, Jin Hwan;Lee, Kwang-Soo;Le, Tuyen Quang;Kang, Taesam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

Effects of Shading Rate and Method of Inside Air Temperature Change in Greenhouse (차광율 및 차광방법이 온실내부의 온도변화에 미치는 영향)

  • 이석건;이현우;김길동;이종원
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • This study was conducted to provide basic data for the design of shading facility of greenhouse. The proper distance between external shading screen and roof surface, transmissivity of shading materials, and shading effects of external and internal shadings were analyzed. About a distance of 10 cm between inclined external shading screen and roof surface was enough to guarantee the external shading effect in the greenhouse without roof vent. The inside temperature of greenhouse installed with 85% internal shading screen was lower the maximum of 4$^{\circ}C$ and mean of 2$^{\circ}C$ than that with 55% internal shading screen in both natural ventilation and no ventilation condition. The difference of soil temperature between shading and no shading greenhouse was great, but the difference by shading rate or shading method was small. The performance of external shading for controlling inside temperature down was superior to that of the internal shading. The externally inclined shading screen parallel to the roof surface of greenhouse was more effective than the externally horizontal shading screen in controlling inside temperature of greenhouse without roof vent.

  • PDF

Effects of $\textrm{CO}_2$ concentration and air current speed on the growth and development of plug seedlings under artificial lighting (인공광하에서 $\textrm{CO}_2$ 농도와 기류속도 제어가 플러그묘의 생육에 미치는 효과)

  • 송대빈;김용현
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.275-280
    • /
    • 1999
  • This study was conducted to investigate the effects of $CO_2$ concentration(310 or 950$\mu$ mol.mol$^{-1}$ ) and air current speed(0.3, 0.5, 0.7 or 0.9m.s$^{-1}$ ) on the growth and development of eggp1ant Plug seedlings (Solanum melongena L.) under artificial 1ighting. For the treatment of $CO_2$ enrichment, stem length and diameter, the ratio of stem length to stem diameter, plant height, leaf area, net photosynthetic rate, top dried weight were significantly different at 1% level. Stem length of plug seedlings decreased at the condition under enriched $CO_2$ and high air current speed above plug stand. Stem diameter of plug seedlings increased and plant height decreased with the increasing $CO_2$ concentration. Plug seedlings had maximum net photosynthetic rate at the air current speed of 0.7m.s$^{-1}$ . Net photosynthetic rate at $CO_2$ concentration of 950$\mu$mol.mol$^{-1}$ increased by 46% than those at 310$\mu$mol.mol$^{-1}$ . Thus $CO_2$ enrichment would be effective for the production of plug seedlings with high quality.

  • PDF

Change in the Concentration of Fine Particles, Temperature, and Relative Humidity as Affected by Different Volume Ratios of Interior Greening in Real Indoor Space (실내녹화 부피비율이 실공간의 미세분진농도, 온도 및 상대습도에 미치는 영향)

  • Ju, Jin-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • The study objective was to compare the interior greening volume ratios for the change in concentration of fine particle, temperature and relative humidity, and to identify the level of interior landscape volume ratio as a suitable condition to achieve the desired indoor properties. Plants were moved into a room (88m3) randomly. After moving, the volume ratio of the interior greening level was set at 0%, 1%, 2% and 3%. The concentration of fine particles was measured with a mini-volume portable air sampler (Air Metrics, USA). The temperature and relative humidity were recorded with a digital sensor (Kiwi-LTH, USA) during the experiment under different volume ratios with three replications. 1. The results of the change in concentration of the fine particles revealed a trend towards an increased volume ratio of interior greening with decreasing concentration of fine particles, compared to non-plants (0%). The concentration of fine particles at volume ratios of 0%, 1%, 2% and 3% was 55ug/$m^3$, 233ug/$m^3$, 40ug/$m^3$ and 30ug/$m^3$, respectively. 2. The change in temperature, at volume ratios of 0%, 1%, 2% and 3% was $21.2^{\circ}C$, $17.4^{\circ}C$, $16.7^{\circ}C$ and $18.9^{\circ}C$, respectively, in near interior greening, and $22.1^{\circ}C$, $18.7^{\circ}C$, $18.4^{\circ}C$ and $20.5^{\circ}C$ respectively, at a distance of 3m from the interior greening. These study results suggested that temperature was affected by volume ratio and distance from the interior greening. 3. The relative humidity, at volume ratios of 0%, 1%, 2% and 3% was 34.2%, 32.5%, 36.7%, and 46.9%, respectively, in near interior greening, and 31.2%, 26.9%, 31.4% and 38.3%, respectively, at a distance of 3m from the interior greening. With increasing volume ratio of interior landscape, there were positive and significant results between the distance difference and the relative humidity more than temperature.

A Study on Equivalent Design Wave Approach for a Wave-Offshore Wind Hybrid Power Generation System (부유식 파력-해상풍력 복합 발전시스템의 등가설계파 기법 적용에 관한 연구)

  • Sohn, Jung Min;Shin, Seung Ho;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • Floating offshore structures should be designed by considering the most extreme environmental loadings which may be encountered in their design life. The most severe loading on a wave-offshore wind hybrid power generation system is wave loads. The principal parameters of wave loads are wave length, wave height and wave direction. The wave loads have different effects on the structural behavior characteristic depending on the combination of wave parameters. Therefore, the process of investigation for critical loads based on the individual wave loading parameter is need. Namely, the equivalent design wave should be derived by finding the wave condition which generates the maximum stress in entire wave conditions. Through a series of analysis, an equivalent regular wave height can be obtained which generates the same amount of the hydrodynamic loads as calculated in the response analysis. The aim of this study is the determination of equivalent design wave regarding to characteristic global hydrodynamic responses for wave-offshore wind hybrid power generation system. It will be utilized in the global structural response analysis subjected to selected design waves and this study also includes an application of global structural analysis.