• Title/Summary/Keyword: environment condition

Search Result 6,762, Processing Time 0.034 seconds

Full-scale Soil Washing and Non-discharged Washing Water Treatment Process of Soil Contaminated With Petroleum Hydrocarbon (현장규모의 유류오염 토양세척 및 무방류 세척 유출수 처리 공정)

  • Seo, Yong-Sik;Choi, Sang-Il;Kim, Jong-Min;Kim, Bo-Kyung;Kim, Sung-Gyoo;Park, Sang-Hean;Ju, Weon-Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.61-67
    • /
    • 2009
  • A non-discharged system of sequentially physico-chemical water treatment was used to treat the contaminated water produced from washing system of soils according to full-scale soil washing. After washing the TPH contaminated soils, the remaining concentrations of COD$_{Mn}$, SS, and n-hexane were analyzed for each compartment to estimate the treatment efficiencies of non-discharged system. Three times of sampling events were conducted for 4 different compartments (sediment tank, flocculation tank, oil/water separator, and process-water tank). In addition, soil washing efficiencies and concentrations of each parameter (COD$_{Mn}$, SS, and n-hexane) for process-water tank were analyzed for about 8 months. As results, the average efficiency of soil washing was high to have 95.9%, regardless of the condition of TPH contamination level for soils, as well as the concentrations of COD$_{Mn}$, SS, and n-hexane in the process-water tank were below the regulation limits of the Water Environmental Conserveation Act. Accordingly, the full-scale washing treatment system in this study could make the washing water 100% recycled which lead the system to be environmentally-friendly and economical.

Removal of Cr, Pb and Cd from Reservoir Sediment by Electrokinetic Technique (동전기를 이용한 유수지 오염 퇴적토내 Cd, Pb 및 Cr제거)

  • Shin, Hyun-Moo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.68-77
    • /
    • 2009
  • For the reservoir sediment highly contaminated with total Cr, Pb, and Cd, the applicability of electrokinetic remediation method was evaluated. Also, BCR sequential extraction method was adopted to compare the heavy metal speciation in between before and after electrokinetic reaction that is operated under constant current condition for the sediment. After reaction, total Cr and Pb moved toward the direction of anode, while Cd tended to cathode and stayed highest in the midst of sediment specimen. From the BCR sequential extraction analysis, it was known that for total Cr and Pb the residual fraction that showed high fraction before reaction decreased and changed to the oxidation fraction. On the other hand, for Cd the fraction of exchangeable/carbonate that dominated most fractions before reaction changed to the residual and oxidation fractions.

A Study on the Modified Fenton Oxidation of MTBE in Groundwater with Permeable Reactive Barrier using Waste Zero-valent Iron (폐영가철 투수성반응벽체를 이용한 Modified Fenton 산화에 의한 MTBE 처리연구)

  • Moon, So-Young;Oh, Min-Ah;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2012
  • MTBE (Methyl tertiary-butyl ether) has been commonly used as an octane enhancer to replace tetraethyl lead in gasoline, because MTBE increases the efficiency of combustion and decreases the emission of carbon monoxide. However, MTBE has been found in groundwater from the fuel spills and leaks in the UST (Underground Storage Tank). Fenton's oxidation, an advanced oxidation catalyzed with ferrous iron, is successful in removing MTBE in groundwater. However, Fenton's oxidation requires the continuous addition of dissolved $Fe^{2+}$. Zero-valent iron is available as a source of catalytic ferrous iron of MFO (Modified Fenton's Oxidation) and has been studied for use in PRBs (Permeable Reactive Barriers) as a reactive material. Therefore, this study investigated the condition of optimization in MFO-PRBs using waste zero-valent iron (ZVI) with the waste steel scrap to treat MTBE contaminated groundwater. Batch tests were examined to find optimal molar ratio of MTBE : $H_2O_2$ on extent to degradation of MTBE in groundwater at pH 7 with 10% waste ZVI. As the results, the ratio of optimization of MTBE to hydrogen peroxide for MFO was determined to be 1:300[mM]. The column experiment was conducted to know applicability of MFO-PRBs for MTBE remediation in groundwater. As the results of column test, MTBE was removed 87% of the initial concentration during 120days of operational period. Interestingly, MTBE was degraded not only within waste ZVI column but also within sand column. It means the aquifer may affect continuously the MTBE contaminated groundwater after throughout the waste ZVI barrier. The residual products showed acetone, TBF (Tert-butyl formate) and TBA (Tert-butyl acetate) during this test. The results of the present study showed that the recycled materials can be effectively used for not only a source of catalytic ferrous iron but also a reactive material of the MFO-PRBs to remove MTBE in groundwater.

Change in Influent Concentration of Domestic Wastewater from Separated Sewer and Biological Nitrogen and Phosphorus Removal of a Full Scale Air-vent SBR (분류식 하수관거로의 전환시 유입하수의 성상 변화 및 선회와류식 SBR공법의 처리 특성)

  • Lee, Jang-Hee;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • This study was carried out to investigate change in influent concentration of domestic wastewater flowed from a newly constructed separate sewer system (SSS) and biological nutrients removal efficiency of a full scale Air-vent sequential batch reactor (SBR, $600m^3/d$). The average concentration of $BOD_5$, SS, T-N and T-P from SSS were 246.5 mg/L, 231.6 mg/L, 42.974 mg/L, 5.360 mg/L, respectively which corresponds to 2.2times, 1.2times, 1.8times and 2.1times higher than those from the conventional combined sewer system (CSS). The removal efficiency of $BOD_5$, SS, T-N, and T-P for the Air-vent SBR operated with influent from SSS averaged 99.1%, 99.0%, 91.2%, and 93.5%, respectively. Especially the respective nitrogen and phosphorus removal was 15% greater than that of the SBR operated with influent from CSS. Simultaneous nitrification and denitrification (SND) was observed in an aerobic reactor(II) as a result of DO concentration gradient developed along the depth by the Air-vent system. In order to achieve T-N removal greater than 90%, the C/N ratio should be over 6.0 and the difference between $BOD_5$ loading and nitrogen loading rate be over 100 kg/day (0.130 kg $T-N/m^3{\cdot}d$). Even with high influent T-P concentration of 5.360 mg/L from SSS (compared with 2.465 mg/L from CSS) T-P removal achieved 93.5% which was 15.5% higher than that of the SBR with influent from CSS. This is probably due to high influent $BOD_5$ concentration from SSS that could provide soluble carbon source to release phosphorus at anaerobic condition. In order to achieve T-P removal greater than 90%, the difference between $BOD_5$ loading and phosphorus loading rate should be over 100 kg /day (0.130 kg $T-N/m^3{\cdot}d$).

Current State and Improvement Measures of HACCP System Applying in Elementary School Lunch (HACCP 적용 초등학교급식에서의 시행실태와 개선방안)

  • Woo, Gun-Yeon;Park, Jae-Yong;Han, Chang-Hyun
    • Journal of the Korean Society of School Health
    • /
    • v.16 no.2
    • /
    • pp.13-23
    • /
    • 2003
  • To provide data necessary for effectively applying the HACCP system by understanding the current application condition of HACCP system and satisfaction level of the dietician in elementary schools, a mail-in survey was conducted on dieticians serving for 227 elementary schools applying HACCP system in Kyungsangbuk-Do since November 1, 2001 to December 20, 2001. 83.5% of the subjected schools were conducting more than 50% of HACCP cooking process management, and the level of cooking process management displayed significant relevance according to the number of dieticians serving the school meals. The area that was not well conducted in the field of HACCP system was proven to be water examination(94.0%), inspection on self-sanitation of cooks prior to cooking(90.6%), and maintenance of dry kitchen floor(l4.8%). The reason why the above areas are not well conducted was because of lack of time due to over workloads. Subjective dieticians had pointed out improvement of sanitary concept(58.1%) and improvement of self-sanitation (28.8%) as benefits of applying HACCP. 21.2% of the subjective dieticians were satisfied with application HACCP and 35.2% were dissatisfied with applying HACCP. In case of which the duration of applying the HACCP was longer than one year and in case of higher rate of HACCP cooking process management and longer work experience of the dieticians, the level of satisfaction was proven to be significantly higher. The most difficult things to follow in important management categories according to the features of dietitian work and work experience were food distribution of CCP7 step and maintenance of optimum temperature(70.7%). Subjective dieticians had pointed out insufficient facility or environment and lack of inspection equipments in order regarding problems of applying HACCP. Also in the level of necessity of improvement categories in applying HACCP, dieticians had replied that facility and equipment improvement was mostly needed. Due to the induction of HACCP system in school meals, comparatively well cooking process management is being conducted, and I believe it could contribute in securing safety and quality improvement of school meal by improving the sanitation concept of the dieticians. However, the satisfaction level of dieticians are rather low and there are many difficulties in maintaining optimum temperature in the process of food distribution and transportation process. Also, lack of facilities and environment, lack of inspection equipments and etc are pointed out as problems of inducing HACCP. Thus, to settle HACCP system, it is believed that brave investment must be preceded.

Distributional Change and Climate Condition of Warm-temperate Evergreen Broad-leaved Trees in Korea (한반도 난온대 상록활엽수의 분포변화 및 기후조건)

  • Yun, Jong-Hak;Kim, Jung-Hyun;Oh, Kyoung-Hee;Lee, Byoung-Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 2011
  • The research was conducted to find optimal habitats of warm-temperate evergreen broad-leaved trees, and to investigate climate factors to determine their distribution using classification tree (CT) analysis. The warm-temperate evergreen broad-leaved trees model (EG-model) constructed by CT analysis showed that Mean minimum temperature of the coldest month (TMC) is a major climate factor in determining distribution of warm-temperate evergreen broad-leaved trees. The areas above the $-5.95^{\circ}C$ of TMC revealed the optimal habitats of the trees. The coldest month mean temperature (CMT) equitable to $-5.95^{\circ}C$ of TMC is $-1.7^{\circ}C$, which is lower than $-1^{\circ}C$ of CMT of warm-temperate evergreen broad-leaved trees. Suitable habitats were defined for warm-temperate evergreen broad-leaved trees in Korea. These habitats were classified into two areas according to the value of TMC. One area with more than$-5.95^{\circ}C$ of TMC was favorable to trees if the summer precipitation (PRS) is above 826.5mm; the other one with less than $-5.95^{\circ}C$ of TMC was favorable if PRS is above 1219mm. These favorable conditions of habitats were similar to those of warm-temperate evergreen broad-leaved trees in Japan. We figured out from these results that distribution of warm-temperate evergreen broad-leaved trees were expanded to inland areas of southern parts of Korean peninsula, and ares with the higher latitude. Finally, the northern limits of warm-temperate evergreen broad-leaved trees might be adjusted accordingly.

Changes in Water Quality and Sediment Yield in the Forest Catchment - A Study of the Lake Shirarutoro Area in Northern Japan - (산림유역의 토지변형에 따른 수질과 토사생산량 변화 - 일본 시라루토로호수 지역의 연구 결과 -)

  • Ahn, Young-Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.6
    • /
    • pp.569-576
    • /
    • 2009
  • Sediment and nutrient loading caused by the removal of forest cover and alteration of agricultural lands in catchments have led to the deterioration in Lake Shirarutoro. To examine the effects of deforestation and agricultural activities on water quality, I examined changes in total nitrogen (TN) and total phosphorus (TP) of lake water induced by land use change, and compared them with the various research data produced over the years. Our investigation showed that the level of TN and TP in the lake water decreased when forest cover increased but increased when farmland area increased. The concentration of TN and TP was high in Lake Shirarutoro despite that its catchment was surrounded by large forests and small farmlands. This result indicates that land uses near Lake Shirarutoro have affected the quality of the lake water. I have examined the changes of sediment yield in the lake's catchment over the last approximately 300 years. Eleven core samples were obtained from the lake sediment and analyzed to establish a chronology after using two tephra layers (Ko-c2 in 1694 and Ta-a in 1739) and a $^{137}Cs$ peak (in 1963). The average sediment yield under the natural condition during the first two periods was 8.4 tons/$km^2$/year in 1694~1739 and 8.9 tons/$km^2$/year in 1739~1963 respectively. The conversion of the Shirarutoro catchment into agricultural lands and deforestation intensified, leading to an increased sediment yield of 21.1 tons/$km^2$/year during 1963~2007.

Analysis of Working Capacity of a Hand-fed Transplanter (반자동정식기 작업 성능 분석)

  • 문성동;민영봉;박중춘
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.159-167
    • /
    • 1997
  • To cope with the mass-production and supply of plug seedling, the supply of transplanters is necessary. In the study, a transplanting test was carried out to find the optimum working condition in the mechanizd transplantation and to acquire the basic data for the improvement of transplanters by the research and analysis of working capacity of the local manual transplanters. The size of hopper affected transplanting stand and rate. Re-irrigation was required for the transplanted seedlings because they wilt 1 day after the transplanting if soil compaction is incomplete. Consequently, back-forth-left-right compaction method was good for soil covering and compaction. It may be thought to increase the amount of irrigation water at the time of transplanting by double-irrigation mechanism, but it needs to increase the larger water tank which makes the operation uneasy. So, assuming the working model by 1 or 2 operators with the machine size as small as possible, it seemed that eliminating of automatic irrigation method was desirable in view of efficiency. Though semiautomatic transplanter needs some structural improvements, it seemed still suitable for transplanting of plug seedlings such as 45-day red pepper seedlings in 128-hole tray and 25-day Chinese cabbage seedling in 128-hole tray. If traveling speed of the transplanter is limited to less than 14 m/min, with the transplanting depth of 2~3cm and transplanting space of 30cm.

  • PDF

Collision Strength Assessment for Double Hull Type Product Carrier Using Finite Element Analysis (이중 선체 화학 운반선의 충돌 강도 평가)

  • Paik, Jeom-Kee;Lee, Jae-Myung;Lee, Kyung-Ern;Won, Suk-Hee;Kim, Chelo-Hong;Ko, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.481-489
    • /
    • 2004
  • Ship collisions and grounding continue to occur regardless of continuous efforts to prevent such accidents. With the increasing demand for safety at sea and for protection of the environment, it is of crucial importance to be able to reduce the probability of accidents, assess their consequences and ultimately minimize or prevent potential damages to the ships and the marine environment. Numerical simulations for actual collision problem are conducted with a special attention with respect to finite element size, fracture criteria and material properties, which require a careful consideration to improve the accuracy. A parametric analysis varying colliding speed, angle, design loading condition is conducted using nonlinear finite element analysis method for 46,00 dwt Product/chemical carrier. The relationship between the absorbed energy and indentation are derived quantitatively using the insights observed from this study, and a novel design concept for assessing the anti-collision performance are proposed.

Effects of Air Pollition on Rice Plant Growth (大氣汚染이 水稻生育에 미치는 影響)

  • 신응배;박완철;허기호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.11-21
    • /
    • 1986
  • The study was performed to investigate the effects of gaseous imission of sulfur dioxide and hydrogen fluoride on the growth of rice plant under stressed field conditions. The plants were cultivated in normal paddy fields where are 88 industrial plants operating with 285 smoke stacks emitting pollutants. There has been a number of reported studies (1, 3, 11, 19, 20) which deal with rice plant damages by air pollution under a simulated exposure experimental condition. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. Furthermore, these experiments were conducted to examine effects of a single pollutant on the plant. In korea, however, there is no study reported in literature with respect to the in-situ dose-response relationship between rice pant reduction in yields and air pollution. This study is specifically dealt with multiple effects of sulfur dioxde and hydrogen fluoride on various plant growth indicators such as leaf damage, culm height, weight of grain, panicles per hill, spikelets per panicle and percent fertility.It appears that there is a good correlation between ambient concentrations of sulfur oxides and sulfur contents found in leaves with an average correlation coefficient of 0.868 within a 1% significance level. It is interesting to note that a better multiple correlation was found between percent leaf damage and sulfur and fluoride contentd found in leaf with a significance of 1% level. The yearly correlation coefficient ranges from 0.963 to 0.987 with an average being 0.971. It is, therefore, believed that a percent leaf damage may serve as a single indicator of pollutional damages to rice plant cultivating in fields. Regarding other factors to the diminution of rice plant growth in polluted atmosphere, it appears that a significant correlation to culm length and dry weight of grain with a 1% significance level whereas T/R ratio has a good correlation with lead damage within 5% significance level. An evaluation of data observed has demonstrated that both panicles per hill and percent fertility are significantly affected by air pollutants. As expected, hydrogen fluoride has more effects than sulfur oxide. It is, however, interesting to note that spikelets per panicles has slightly been affected while no indication of effects on 1000-grain-weight has been observed. This may lead to a conclusion that a reduction in yield of rice under polluted field conditions may have more been caused by the diminution of panicles per hill and percent fertility rather than by the diminution of spikelets per panicle and grain weight.

  • PDF