• Title/Summary/Keyword: envelope of motion

Search Result 46, Processing Time 0.022 seconds

Surgical Treatment of Olecranon Fractures

  • Koh, Kyoung-Hwan;Oh, Hyoung-Keun
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • Since the olecranon fractures are caused by relatively low-energy injuries, such as a fall from standing height, they are usually found without comminution. Less commonly they can be developed by high-energy injuries and have severe concomitant comminution or injuries to surrounding structures of the elbow. Because the fracture by nature is intra-articular with the exception of some avulsion-type fracture, a majority of olecranon fractures are usually indicated for surgical treatment. Even if there is minimal displacement, surgical treatment is recommended because there is a possibility of further displacement by the traction force of triceps tendon. The most common type of olecranon fracture is displaced, simple non-comminuted fracture (that is, Mayo type IIA fractures). Although tension band wiring was the most widespread treatment method for these fractures previously, there is some trends toward fixation using locking plates. Primary goal of the surgery is to restore a congruent joint and extensor mechanisms by accurate reduction and stable fixation so that range of motion exercises can be performed. The literature has shown that good clinical outcomes are achieved irrespective of surgical fixation technique. However, since the soft tissue envelope around the elbow is poor and the implants are located at the subcutaneous layer, implant irritation is still the most common complication associated with surgical treatment.

Integrated Roll-Pitch-Yaw Autopilot via Equivalent Based Sliding Mode Control for Uncertain Nonlinear Time-Varying Missile

  • AWAD, Ahmed;WANG, Haoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.688-696
    • /
    • 2017
  • This paper presents an integrated roll-pitch-yaw autopilot using an equivalent based sliding mode control for skid-to-turn nonlinear time-varying missile system with lumped disturbances in its six-equations of motion. The considered missile model are developed to integrate the model uncertainties, external disturbances, and parameters perturbation as lumped disturbances. Moreover, it considers the coupling effect between channels, the variation of missile velocity and parameters, and the aerodynamics nonlinearity. The presented approach is employed to achieve a good tracking performance with robustness in all missile channels simultaneously during the entire flight envelope without demand of accurate modeling or output derivative to avoid the noise existence in the real missile system. The proposed autopilot consisting of a two-loop structure, controls pitch and yaw accelerations, and stabilizes the roll angle simultaneously. The Closed loop stability is studied. Numerical simulation is provided to evaluate performance of the suggested autopilot and to compare it with an existing autopilot in the literature concerning the robustness against the lumped disturbances, and the aforesaid considerations. Finally, the proposed autopilot is integrated in a six degree of freedom flight simulation model to evaluate it with several target scenarios, and the results are shown.

Stochastic Analysis of Base-Isolated Pool Structure Considering Fluid-Structure Interaction Effects (유체-구조물 상호작용을 고려한 면진구조물의 추계학적 응답해석)

  • Koh, Hyun Moo;Kim, Jae Kwan;Park, Kwan Soon;Ha, Dong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.463-472
    • /
    • 1994
  • A method of stochastic response analysis of base-isolated fluid-filled pool structures subject to random ground excitations is studied. Fluid-structure interaction effects between the flexible walls and contained fluid are taken into account in the form of added mass matrix derived by FEM modeling of the contained fluid motion. The stationary ground excitation is represented by Modified Clough-Penzien spectral model and the nonstationary one is obtained by imposing an envelope function on the stationary one. The stationary and nonstationary response statistics of the two different isolation systems are obtained by solving the governing Lyapunov covariance matrix differential equations.

  • PDF

Missile Flight Condition for Slip-in Booster's Safe Separation (내삽형 부스터 안전 분리를 위한 비행 조건 연구)

  • Oh, Hyun-Shik;Lee, Ho-Il;Cho, Jin;Kim, Ik-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • A mathematical model of slip-in booster separation dynamics is described. A longitudinal 3-DOF(degree of freedom) 2-body dynamic model is developed to simulate the separation dynamics. Aerodynamic models of the missile and the exposed area of booster are built. And, gas generator pushing the booster out and internal channel pressure drop are modelled. To simulate the model, it is assumed that the missile can maintain the 1g level-fight condition during the separation. With this assumption, the interaction forces between missile and booster through the separation phases: phase 0: initial, phase 1: linear translation, and phase 2: free flight motion are defined. Using the simulation, missile flight conditions for slip-in booster`s safe separation, which can be represented by Mach vs. height envelope, are suggested.

Practical seismic assessment of unreinforced masonry historical buildings

  • Pardalopoulos, Stylianos I.;Pantazopoulou, Stavroula J.;Ignatakis, Christos E.
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.195-215
    • /
    • 2016
  • Rehabilitation of historical unreinforced masonry (URM) buildings is a priority in many parts of the world, since those buildings are a living part of history and a testament of human achievement of the era of their construction. Many of these buildings are still operational; comprising brittle materials with no reinforcements, with spatially distributed mass and stiffness, they are not encompassed by current seismic assessment procedures that have been developed for other structural types. To facilitate the difficult task of selecting a proper rehabilitation strategy - often restricted by international treaties for non-invasiveness and reversibility of the intervention - and given the practical requirements for the buildings' intended reuse, this paper presents a practical procedure for assessment of seismic demands of URM buildings - mainly historical constructions that lack a well-defined diaphragm action. A key ingredient of the method is approximation of the spatial shape of lateral translation, ${\Phi}$, that the building assumes when subjected to a uniform field of lateral acceleration. Using ${\Phi}$ as a 3-D shape function, the dynamic response of the system is evaluated, using the concepts of SDOF approximation of continuous systems. This enables determination of the envelope of the developed deformations and the tendency for deformation and damage localization throughout the examined building for a given design earthquake scenario. Deformation demands are specified in terms of relative drift ratios referring to the in-plane and the out-of-plane seismic response of the building's structural elements. Drift ratio demands are compared with drift capacities associated with predefined performance limits. The accuracy of the introduced procedure is evaluated through (a) comparison of the response profiles with those obtained from detailed time-history dynamic analysis using a suite of ten strong ground motion records, five of which with near-field characteristics, and (b) evaluation of the performance assessment results with observations reported in reconnaissance reports of the field performance of two neoclassical torsionally-sensitive historical buildings, located in Thessaloniki, Greece, which survived a major earthquake in the past.

Electromyographical Analyses of Muscle Activities of Upper Trunk for Ssireum Dutguri Technique (Electromyography 기법을 이용한 씨름 덧걸이 기술의 상체 근 동원 비교분석)

  • Shin, Sung-Hyu;Lim, Young-Tae;Kim, Tae-Hwan;Park, Ki-Ja;Kwon, Moon-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.1
    • /
    • pp.95-108
    • /
    • 2003
  • The purposes of this study were to analyze the muscle activities and the characteristics of muscle recruiting patterns of upper trunk for Ssirum dutguri technique using three top-ranked elite Ssirum players. The EMG technique was used to record muscle activities of both right and left sides of latissimus dorsi, biceps brachii, and erector spinae. Six surface electrodes were placed on the surface of the selected muscles and one ground electrode was also attached on the back of neck(C7). One video camera was also used to record the Ssirum motion to define 4 events and 3 phases for further analysis. The raw EMG data were filtered with band pass filter (50-400 Hz) to remove artifacts and then low pass filtered (4 Hz) to find the linear envelope which resemble muscle tension curve. This filtered EMG data were normalized to MVIC for the purpose of comparion between the subjects. The results were indicated that each subject with different physical characteristics showed very different muscle activity patterns. Although Ssirum dutguri is considered as foot technique the player grasped opponent's satba(belt) with both hands when they play. Because of this reason, activities of upper trunk muscles were relatively high. However, direct comparison between upper and lower body muscles was not possible due to the lack of the data in present study. Interestingly, all threes subjects showed that erector spinae muscle activity was comparatively higher than those of latissimus dorsi and biceps brachii. This implies to reinforce back muscle as a routine of training to improve performance or to prevent back injury.