Journal of Institute of Control, Robotics and Systems
/
v.8
no.4
/
pp.333-337
/
2002
A content-based image retrieval method using color, texture, and shape features is proposed in this paper. A region segmentation technique using PIM(Picture Information Measure) entropy is used for similarity indexing. For segmentation, a color image is first transformed to a gray image and it is divided into n$\times$n non-overlapping blocks. Entropy using PIM is obtained from each block. Adequate variance to perform good segmentation of images in the database is obtained heuristically. As variance increases up to some bound, objects within the image can be easily segmented from the background. Therefore, variance is a good indication for adequate image segmentation. For high variance image, the image is segmented into two regions-high and low entropy regions. In high entropy region, hue-saturation-intensity and canny edge histograms are used for image similarity calculation. For image having lower variance is well represented by global texture information. Experiments show that the proposed method displayed similar images at the average of 4th rank for top-10 retrieval case.
Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.
In this paper, we propose a Difference Image Entropy based gaze direction recognition system. The Difference Image Entropy is computed by histogram levels using the acquired difference image of current image and reference images or average images that have peak positions from $-255{\sim}+255$ to prevent information omission. There are two methods about the Difference Image Entropy based gaze direction. 1) The first method is to compute the Difference Image Entropy between an input image and average images of 45 images in each location of gaze, and to recognize the directions of user's gaze. 2) The second method is to compute the Difference Image Entropy between an input image and each 45 reference images, and to recognize the directions of user's gaze. The reference image is created by average image of 45 images in each location of gaze after receiving images of 4 directions. In order to evaluate the performance of the proposed system, we conduct comparison experiment with PCA based gaze direction system. The directions of recognition left-top, right-top, left-bottom, right-bottom, and we make an experiment on that, as changing the part of recognition about 45 reference images or average image. The experimental result shows that the recognition rate of Difference Image Entropy is 97.00% and PCA is 95.50%, so the recognition rate of Difference Image Entropy based system is 1.50% higher than PCA based system.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.5
/
pp.543-548
/
2011
Entropy measuring the richness in details of the image is generally obtained by using the histogram of gray levels in an image, and has been widely used as an index for thresholding of the image. In this paper, we propose an entropy-based thresholding method, where the entropy is obtained not by the histogram but by the variance of the gray levels, to binalize a given image. The effectiveness of the proposed method is demonstrated by thresholding experiments on nine test images and comparison with conventional two thresholding methods, that is, Otsu method and entropy-based method using the histogram.
Human beings have been fascinated by the applicability of the medium of photography since the device was first introduced in the thirteenth century to acquire images by attempting primitive and rudimentary approaches. In the 21st century, it has been developed as a wide range of technology that enables not only the application of artistic expression as a method of replacing the human-hand-painted screen but also the planar recording form in the format of video or image. It is more effective to use the information extracted from the image data rather than to use a randomly given file name in order to provide a variety of services in the offline or online system. When extracting an identifier from a region of an image, high cost cannot be avoided. This paper discusses the image entropy-based approach and proposes a linear methodology to measure the image entropy in an effort to devise a solution to this method.
Shadows are common phenomena observed in natural scenes and often bring a major problem that is affected negatively in colour image analysis. It is important to detect the shadow areas and should be considered in the pre-processing of computer vision. In this paper, the method of shadow detection is proposed using cross entropy and intensity image, and is performed in single image based on the satellite images. After converting the color image to a gray level image, the shadow candidate region has been estimated the optimal threshold value by cross entropy, and then the final shadow region has been detected using intensity image. For the validity of the proposed method, the satellite images is used to experiment. Some experiments are conducted so as to verify the proposed method, and as a result, shadow detection is well performed.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.6
/
pp.89-97
/
2004
An object to reflect or emit light is captured by imaging system as distorted image due to various distortion. It is called image restoration that estimates original object by removing distortion. There are two categories in image restoration method. One is a deterministic method and the other is a stochastic method. In this paper, image restoration using Minimum Fisher Information(MFI), derived from B. Roy Frieden is proposed. In MFI restoration, experimental results to be made according to noise control parameter were investigated. And cross entropy(Kullback-Leibler entropy) was used as a standard measure of restoration accuracy, It is confirmed that restoration results using MFI have various roughness according to noise control parameter.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.12a
/
pp.5-8
/
2002
In this paper, we introduce a simple new method on calculating the entropy of the image fuzzy set gotten by the extension principle without calculating its membership function.
The Journal of Korean Institute of Communications and Information Sciences
/
v.21
no.6
/
pp.1390-1397
/
1996
In this paper, in case of segmenting an image by a fuzzy entropy, an image segmentation algorithm is derived under an extended fuzzy entropy including the probabilistic including the probabilistic information in order to cover the toal uncertainty of information contained in fuzzy sets. By describing the image with fuzzysets, the total uncertainty of a fuzzy set consists of the uncertain information arising from its fuzziness and the uncertain information arising from the randomness in its ordinary set. To optimally segment all the boundary regions in the image, the total entropy function is computed by locally applving the fuzzy and Shannon entropies within the width of the fuzzy regions and the image is segmented withthe global maximum andlocal maximawhich correspond to the boundary regions. Comtional one by detecting theboundary regions more than 5 times.
Journal of the Korea Society of Computer and Information
/
v.21
no.5
/
pp.31-40
/
2016
In this paper, we analyse the characteristics of the edge image and propose a new entropy coding optimized to the compression of the edge image. The pixel values of the edge image have the Gaussian distribution around '0', and most of the pixel values are '0'. By using this analysis, the Zero Block technique is utilized in spatial domain. And the Intra Prediction Mode of the edge image is similar to the mode of the surrounding blocks or likely to be the Planar Mode or the Horizontal Mode. In this paper, we make use of the MPM technique that produces the Intra Prediction Mode with high probability modes. By utilizing the above properties, we design a new entropy coding method that is suitable for edge image and perform the compression. In case the existing compression techniques are applied to edge image, compression ratio is low and the algorithm is complicated as more than necessity and the running time is very long, because those techniques are based on the natural images. However, the compression ratio and the running time of the proposed technique is high and very short, respectively, because the proposed algorithm is optimized to the compression of the edge image. Experimental results indicate that the proposed algorithm provides better visual and PSNR performance up to 11 times than the JPEG.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.