• Title/Summary/Keyword: enthalpy model

Search Result 182, Processing Time 0.023 seconds

Adsorption Kinetic, Thermodynamic Parameter and Isosteric Heat for Adsorption of Crystal Violet by Activated Carbon (활성탄에 의한 Crystal Violet 흡착에 있어서 흡착동력학, 열역학 인자 및 등량흡착열)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.206-213
    • /
    • 2017
  • The adsorption of crystal violet dyes from aqueous solution using the granular activated carbon was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The adsorption characteristic of crystal violet followed Langmuir isotherm. Based on the estimated Langmuir separation factor ($R_L=0.02{\sim}0.106$), this process could be employed as an effective treatment (0 < $R_L$ < 1). The adsorption kinetics followed the pseudo second order model. The values of Gibbs free energy (-1.61~-11.66 kJ/mol) and positive enthalpy (147.209 kJ/mol) indicated that the adsorption process is a spontaneous and endothermic reaction. The isosteric heat of adsorption decreased with increasing of surface loading by the limited adsorbent-adsorbate interaction due to increased surface coverage.

An Investigation on Flow Stability with Damping of Flow Oscillations in CANDU-6 heat Transport System (CANDU-6 열수송 계통의 유동 진동감쇠에 의한 유동안정성 연구)

  • 김태한;심우건;한상구;정종식;김선철
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.163-177
    • /
    • 1996
  • An investigation on thermohydraulic stability of flow oscillations in the CANada Deuterium Uranium-600(CANDU-6) heat transport system has been conducted. Flow oscillations in reactor coolant loops, comprising two heat sources and two heat sinks in series, are possibly caused by the response of the pressure to extraction of fluid in two-phase region. This response consists of two contributions, one arising from mass and another from enthalpy change in the two-phase region. The system computer code used in the investigation os SOPHT, which is capable of simulating steady states as well as transients with varying boundary conditions. The model was derived by linearizing and solving one-dimensional, homogeneous single- and two-phase flow conservation equations. The mass, energy and momentum equations with boundary conditions are set up throughout the system in matrix form based on a node-link structure. Loop stability was studied under full power conditions with interconnecting the two compressible two phase regions in the figure-of-eight circuit. The dominant function of the interconnecting pipe is the transfer of mass between the two-phase regions. Parametric survey of loop stability characteristics, i. e., damping ratio and period, has been made as a function of geometrical parameters of the interconnection line such as diameter, length, height and orifice flow coefficient. The stability characteristics with interconnection line has been clarified to provide a simple criterion to be used as a guide in scaling of the pipe.

  • PDF

Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials

  • DEN, Muhammed Kamil O;ONGAR, Sezen KUC UKC
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.23-38
    • /
    • 2019
  • In this study, Malachite Green (MG) dye removal from synthetic wastewaters by adsorption process using raw boron enrichment waste (BEW) and it's modifications (with acid and ultrasound) were aimed. 81% MG removal was obtained by BEW at optimum equilibrium conditions (time: 40 min., dosage: 500 mg/dm3, pH: 5-6, speed: 200 rpm, 298 K). MG removal from wastewaters using acid modified boron enrichment waste (HBEW) was determined as 82% at optimum conditions (time: 20 min., dosage: 200 mg/dm3, pH: 10, speed: 200 rpm, 298 K). For ultrasound modified BEW (UBEW), the highest MG removal percent was achieved as 84% at optimum conditions (time: 30 min, dosage: 375 mg/ dm3, pH: 8, speed: 200 rpm, 298 K). The equilibrium data of Malachite Green was evaluated for BEW, HBEW and UBEW adsorbents by using sorption isotherms such as Langmuir, Freundlich and Temkin models, out of which Langmuir model (R2 = 0.971, 0.987 and 0.984) gave better correlation and maximum adsorption capacity was found to be 147.05, 434.78 and 192.30 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic equation for sorption of MG onto wastes. A look at thermodynamic data reveals that natural sorption is spontaneous and endothermic because of free negative energy exchange and positive change in enthalpy, respectively. The results indicated that boron enrichment waste, and HCl and ultrasound-modified boron enrichment waste served as good alternative adsorbents in dye removal from wastewater.

Adsorption Equilibrium, Kinetic and Thermodynamic Param (활성탄을 이용한 Acid Green 27의 흡착평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • Adsorption characteristics of acid green 27 dye using activated carbon were investigated as function of adsorbent dose, pH, initial concentration, contact time and temperature. Freundlich isotherm explained adsorption of acid green 27 dye very well and Freundlich separation factors (1/n=0.293~0.387) were found that this process could be employed as effective treatment method. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. Pseudo second rate constant ($k_2$) decreased with the increase in initial acid green 27 concentration. Activation energy (10.457 kJ/mol) and enthalpy (79.946 kJ/mol) indicated that adsorption process was physisorption and endothermic. Since Gibbs free energy decreased with increasing temperature, spontaneity of adsorption reaction increased with increasing temperature in the temperature range of 298 K~318 K.

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.246-249
    • /
    • 2007
  • In numerical analysis for phase change material, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be used without modelling. In this study applicability of neural networks in modelling superheated vapor region of water was examined by comparing with the quadratic spline. neural network consists of an input layer with 2 nodes, two hidden layers and an output layer with 3 nodes. Quadratic spline interpoation method was also applied for comparison. Neural network model revealed smaller percentage error to quadratic spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the superheated range of the steam table.

  • PDF

Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Black 1 Using Coconut Shell-Based Granular Activated Carbon (야자각계 입상 활성탄의 Acid Black 1 염료 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구)

  • Lee, Dong-Chang;Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.590-598
    • /
    • 2016
  • In this study, the adsorption behavior from aqueous solution as well as kinetic and thermodynamic parameters of Acid Black 1 were investigated through batch reaction using coconut shell based granular steam activated carbon. The effects of various adsorption parameters such as pH, initial concentration, contact time, temperature were studied. To confirm the effect of pH, pHpzc measurements were analyzed followed by measuring removal efficiencies of Acid Black 1 at the pH range from 3 to 11. Experimental equilibrium adsorption data were fitted using Langmuir, Freundlich, Temkin and Dubinin-Radushkevich adsorption isotherm. The conformity of adsorption reaction for pseudo first and second order model were evaluated through kinetic analysis. Values of enthalpy change and activation energy were also investigated through thermodynamic analysis and it was confirmed that the adsorption process was endothermic. The spontaneity of adsorption process was evaluated using the values of entropy and Gibbs free energy changes.

Studies on the Estimation of Theromodynamic Properties for the Non-Azeotropic Refrigerant Mixtures (혼합냉매의 열역학적 물성치 추산에 관한 연구)

  • 김민수;김동섭;노승탁;김욱중;윤재호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1337-1348
    • /
    • 1990
  • Estimations of the thermodynamic properties are made for the selected binary non-azeotropic refrigerant mixtures including R13B1/R114, R22/R114, R12/R114, R152a/R114, R13B1/R152a and R13B1/R12 using the Peng-Robinson equation of state and mixing rules. In this study, we find that the binary interaction coefficients for the above mixtures have an effect upon the vapor-liquid equilibria and the thermodynamic properties. As the binary interaction coefficient becomes larger, the deviation from the idealized model, say, Raoult`s rule, is obvious. A correlation is proposed to relate the binary interaction coefficient to the difference between the dipole moments op each pure refrigerant. Vapor-liquid equilibrium are also accurately estimated using the binary interaction coefficient. Pressure-enthalpy and temperature-entropy relations are plotted for a certain composition ratio of each refrigerant mixture. Results show that the estimating method in this study can be applied to the investigation of the thermodynamic properties for the binary non-azeotropic refrigerant mixtures.

Analysis of Heat Release Rate with Various Diameter of Heptane Pool Fire Using Large Scale Cone Calorimeter (헵탄의 화원 직경 변화를 고려한 대형콘칼로리미터의 발열량 측정 결과 분석)

  • You, Woo Jun;Nam, Dong-Gun;Youm, Moon Cheon;Kim, Sung-Chan;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.1-7
    • /
    • 2014
  • The present study has been conducted to analyse the effects of various pool diameters on the measurement of heat release rate (HRR) of heptane fire using large scale cone calorimeter (LSC). The burning rate which is the major parameter for HRR compared with the previous model suggested by A. Hamins. The combustion efficiency for heptane by oxygen consumption method is about 91%, which is almost same with the previous results of 92% suggested by J. Gore. The convective HRR by enthalpy consumption method was 54% lower than HRR by oxygen consumption method. This results are practical use for establishing the reliability of heat release rate for fire experiment.

Function Approximation for Refrigerant Using the Neural Networks (신경회로망을 사용한 냉매의 함수근사)

  • Park, Jin-Hyun;Lee, Tae-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.677-680
    • /
    • 2005
  • In numerical analysis on the thermal performance of the heat exchanger with phase change fluids, the numerical values of thermodynamic properties are needed. But the steam table should be modeled properly as the direct use of thermodynamic properties of the steam table is impossible. In this study the function approximation characteristics of neural networks was used in modeling the saturated vapor region of refrigerant R12. The neural network consists of one input layer with one node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. Input can be both saturation temperature and saturation pressure and two cases were examined. The proposed model gives percentage error of ${\pm}$0.005% for enthalpy and entropy, ${\pm}$0.02% for specific volume and ${\pm}$0.02% for saturation pressure and saturation temperature except several points. From this results neural network could be a powerful method in function approximation of saturated vapor region of R12.

  • PDF

Modelling the wide temperature range of steam table using the neural networks (신경회로망을 사용한 넓은 온도 범위의 증기표 모델링)

  • Lee, Tae-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2008-2013
    • /
    • 2006
  • In numerical analysis on evaluating the thermal performance of the thermal equipment, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table itself cannot be used without modelling. In this study applicability of neural networks in modelling the wide temperature range of wet saturated vapor region was examined. the multi-layer neural network consists of a input layer with 1 node, two hidden layers with 10 and 20 nodes respectively and a output layer with 6 nodes. Quadratic and cubic spline interpoations methods were also applied for comparison. Neural network model revealed similar percentage error to spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the wide range of the steam table.