• Title/Summary/Keyword: ensemble training

Search Result 126, Processing Time 0.026 seconds

Metaheuristic models for the prediction of bearing capacity of pile foundation

  • Kumar, Manish;Biswas, Rahul;Kumar, Divesh Ranjan;T., Pradeep;Samui, Pijush
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.129-147
    • /
    • 2022
  • The properties of soil are naturally highly variable and thus, to ensure proper safety and reliability, we need to test a large number of samples across the length and depth. In pile foundations, conducting field tests are highly expensive and the traditional empirical relations too have been proven to be poor in performance. The study proposes a state-of-art Particle Swarm Optimization (PSO) hybridized Artificial Neural Network (ANN), Extreme Learning Machine (ELM) and Adaptive Neuro Fuzzy Inference System (ANFIS); and comparative analysis of metaheuristic models (ANN-PSO, ELM-PSO, ANFIS-PSO) for prediction of bearing capacity of pile foundation trained and tested on dataset of nearly 300 dynamic pile tests from the literature. A novel ensemble model of three hybrid models is constructed to combine and enhance the predictions of the individual models effectively. The authenticity of the dataset is confirmed using descriptive statistics, correlation matrix and sensitivity analysis. Ram weight and diameter of pile are found to be most influential input parameter. The comparative analysis reveals that ANFIS-PSO is the best performing model in testing phase (R2 = 0.85, RMSE = 0.01) while ELM-PSO performs best in training phase (R2 = 0.88, RMSE = 0.08); while the ensemble provided overall best performance based on the rank score. The performance of ANN-PSO is least satisfactory compared to the other two models. The findings were confirmed using Taylor diagram, error matrix and uncertainty analysis. Based on the results ELM-PSO and ANFIS-PSO is proposed to be used for the prediction of bearing capacity of piles and ensemble learning method of joining the outputs of individual models should be encouraged. The study possesses the potential to assist geotechnical engineers in the design phase of civil engineering projects.

Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches (선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정)

  • Kim, Yoo-Chul;Yang, Kyung-Kyu;Kim, Myung-Soo;Lee, Young-Yeon;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.6
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.

Cavitation state identification of centrifugal pump based on CEEMD-DRSN

  • Cui Dai;Siyuan Hu;Yuhang Zhang;Zeyu Chen;Liang Dong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1507-1517
    • /
    • 2023
  • Centrifugal pumps are a crucial part of nuclear power plants, and their dependable and safe operation is crucial to the security of the entire facility. Cavitation will cause the centrifugal pump to violently vibration with the large number of vacuoles generated, which not only affect the hydraulic performance of the centrifugal pump but also cause structural damage to the impeller, seriously affecting the operational safety of nuclear power plants. A closed cavitation test bench of a centrifugal pump is constructed, and a method for precisely identifying the cavitation state is proposed based on Complementary Ensemble Empirical Mode Decomposition (CEEMD) and Deep Residual Shrinkage Network (DRSN). First, we compared the cavitation sensitivity of pressure fluctuation, vibration, and liquid-borne noise and decomposed the liquid-borne noise by CEEMD to capture cavitation characteristics. The decomposition results are sent into a 12-layer deep residual shrinkage network (DRSN) for cavitation identification training. The results demonstrate that the liquid-borne noise signal is the most cavitation-sensitive signal, and the accuracy of CEEMD-DRSN to identify cavitation at different stages of centrifugal pumps arrives at 94.61%

3-stage Portfolio Selection Ensemble Learning based on Evolutionary Algorithm for Sparse Enhanced Index Tracking (부분복제 지수 상향 추종을 위한 진화 알고리즘 기반 3단계 포트폴리오 선택 앙상블 학습)

  • Yoon, Dong Jin;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 2021
  • Enhanced index tracking is a problem of optimizing the objective function to generate returns above the index based on the index tracking that follows the market return. In order to avoid problems such as large transaction costs and illiquidity, we used a method of constructing a portfolio by selecting only some of the stocks included in the index. Commonly used enhanced index tracking methods tried to find the optimal portfolio with only one objective function in all tested periods, but it is almost impossible to find the ultimate strategy that always works well in the volatile financial market. In addition, it is important to improve generalization performance beyond optimizing the objective function for training data due to the nature of the financial market, where statistical characteristics change significantly over time, but existing methods have a limitation in that there is no direct discussion for this. In order to solve these problems, this paper proposes ensemble learning that composes a portfolio by combining several objective functions and a 3-stage portfolio selection algorithm that can select a portfolio by applying criteria other than the objective function to the training data. The proposed method in an experiment using the S&P500 index shows Sharpe ratio that is 27% higher than the index and the existing methods, showing that the 3-stage portfolio selection algorithm and ensemble learning are effective in selecting an enhanced index portfolio.

Comparison of Seismic Data Interpolation Performance using U-Net and cWGAN (U-Net과 cWGAN을 이용한 탄성파 탐사 자료 보간 성능 평가)

  • Yu, Jiyun;Yoon, Daeung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.140-161
    • /
    • 2022
  • Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.

A Multimodal Profile Ensemble Approach to Development of Recommender Systems Using Big Data (빅데이터 기반 추천시스템 구현을 위한 다중 프로파일 앙상블 기법)

  • Kim, Minjeong;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.93-110
    • /
    • 2015
  • The recommender system is a system which recommends products to the customers who are likely to be interested in. Based on automated information filtering technology, various recommender systems have been developed. Collaborative filtering (CF), one of the most successful recommendation algorithms, has been applied in a number of different domains such as recommending Web pages, books, movies, music and products. But, it has been known that CF has a critical shortcoming. CF finds neighbors whose preferences are like those of the target customer and recommends products those customers have most liked. Thus, CF works properly only when there's a sufficient number of ratings on common product from customers. When there's a shortage of customer ratings, CF makes the formation of a neighborhood inaccurate, thereby resulting in poor recommendations. To improve the performance of CF based recommender systems, most of the related studies have been focused on the development of novel algorithms under the assumption of using a single profile, which is created from user's rating information for items, purchase transactions, or Web access logs. With the advent of big data, companies got to collect more data and to use a variety of information with big size. So, many companies recognize it very importantly to utilize big data because it makes companies to improve their competitiveness and to create new value. In particular, on the rise is the issue of utilizing personal big data in the recommender system. It is why personal big data facilitate more accurate identification of the preferences or behaviors of users. The proposed recommendation methodology is as follows: First, multimodal user profiles are created from personal big data in order to grasp the preferences and behavior of users from various viewpoints. We derive five user profiles based on the personal information such as rating, site preference, demographic, Internet usage, and topic in text. Next, the similarity between users is calculated based on the profiles and then neighbors of users are found from the results. One of three ensemble approaches is applied to calculate the similarity. Each ensemble approach uses the similarity of combined profile, the average similarity of each profile, and the weighted average similarity of each profile, respectively. Finally, the products that people among the neighborhood prefer most to are recommended to the target users. For the experiments, we used the demographic data and a very large volume of Web log transaction for 5,000 panel users of a company that is specialized to analyzing ranks of Web sites. R and SAS E-miner was used to implement the proposed recommender system and to conduct the topic analysis using the keyword search, respectively. To evaluate the recommendation performance, we used 60% of data for training and 40% of data for test. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. A widely used combination metric called F1 metric that gives equal weight to both recall and precision was employed for our evaluation. As the results of evaluation, the proposed methodology achieved the significant improvement over the single profile based CF algorithm. In particular, the ensemble approach using weighted average similarity shows the highest performance. That is, the rate of improvement in F1 is 16.9 percent for the ensemble approach using weighted average similarity and 8.1 percent for the ensemble approach using average similarity of each profile. From these results, we conclude that the multimodal profile ensemble approach is a viable solution to the problems encountered when there's a shortage of customer ratings. This study has significance in suggesting what kind of information could we use to create profile in the environment of big data and how could we combine and utilize them effectively. However, our methodology should be further studied to consider for its real-world application. We need to compare the differences in recommendation accuracy by applying the proposed method to different recommendation algorithms and then to identify which combination of them would show the best performance.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.

Role of Attentional Focus in Balance Training: Effects on Ankle Kinematics in Patients with Chronic Ankle Instability during Walking - A Double-Blinded Randomized Control Trial

  • Hyun Sik Chang;Hyung Gyu Jeon;Tae Kyu Kang;Kyeongtak Song;Sae Yong Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.2
    • /
    • pp.62-72
    • /
    • 2023
  • Objective: Although balance training has been used as an effective ankle injury rehabilitation program to restore neuromuscular deficits in patients with chronic ankle instability, it is not effectively used in terms of motor learning. Attentional focusing can be an effective method for improving ankle kinematics to prevent recurrent ankle injuries. This study aimed to 1) evaluate the effects of attentional focus, including internal and external focus, and 2) determine a more effective focusing method for patients with chronic ankle instability to learn balance tasks. Method: Twenty-four patients with chronic ankle instability were randomly assigned to three groups (external focus, internal focus, and no feedback) and underwent four weeks of progressive balance training. The three-dimensional ankle kinematics of each patient were measured before and after training as the main outcomes. Ensemble curve analysis, discrete point analysis, and post hoc pairwise comparisons were performed to identify interactions between groups and time. Results: The results showed that (1) the external focus group was more dorsiflexed and everted than the internal focus group; (2) the external focus group was more dorsiflexed than the no feedback group; and (3) the no feedback group was more dorsiflexed than the internal focus group. Conclusion: Because dorsiflexion and eversion are ankle motions that oppose the mechanism of lateral ankle sprain, using the external focus method during balance training may be more effective in modifying these motions, thereby reducing the risk of ankle sprain.

Landslide Susceptibility Mapping Using Ensemble FR and LR models at the Inje Area, Korea (FR과 LR 앙상블 모형을 이용한 산사태 취약성 지도 제작 및 검증)

  • Kim, Jin Soo;Park, So Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • This research was aimed to analyze landslide susceptibility and compare the prediction accuracy using ensemble frequency ratio (FR) and logistic regression at the Inje area, Korea. The landslide locations were identified with the before and after aerial photographs of landslide occurrence that were randomly selected for training (70%) and validation (30%). The total twelve landslide-related factors were elevation, slope, aspect, distance to drainage, topographic wetness index, stream power index, soil texture, soil sickness, timber age, timber diameter, timber density, and timber type. The spatial relationship between landslide occurrence and landslide-related factors was analyzed using FR and ensemble model. The produced LSI maps were validated and compared using relative operating characteristics (ROC) curve. The prediction accuracy of produced ensemble LSI map was about 2% higher than FR LSI map. The LSI map produced in this research could be used to establish land use planning and mitigate the damages caused by disaster.

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.