• Title/Summary/Keyword: ensemble training

Search Result 126, Processing Time 0.037 seconds

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

Spatial-temporal Ensemble Method for Action Recognition (행동 인식을 위한 시공간 앙상블 기법)

  • Seo, Minseok;Lee, Sangwoo;Choi, Dong-Geol
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.385-391
    • /
    • 2020
  • As deep learning technology has been developed and applied to various fields, it is gradually changing from an existing single image based application to a video based application having a time base in order to recognize human behavior. However, unlike 2D CNN in a single image, 3D CNN in a video has a very high amount of computation and parameter increase due to the addition of a time axis, so improving accuracy in action recognition technology is more difficult than in a single image. To solve this problem, we investigate and analyze various techniques to improve performance in 3D CNN-based image recognition without additional training time and parameter increase. We propose a time base ensemble using the time axis that exists only in the videos and an ensemble in the input frame. We have achieved an accuracy improvement of up to 7.1% compared to the existing performance with a combination of techniques. It also revealed the trade-off relationship between computational and accuracy.

Comparing Classification Accuracy of Ensemble and Clustering Algorithms Based on Taguchi Design (다구찌 디자인을 이용한 앙상블 및 군집분석 분류 성능 비교)

  • Shin, Hyung-Won;Sohn, So-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.47-53
    • /
    • 2001
  • In this paper, we compare the classification performances of both ensemble and clustering algorithms (Data Bagging, Variable Selection Bagging, Parameter Combining, Clustering) to logistic regression in consideration of various characteristics of input data. Four factors used to simulate the logistic model are (1) correlation among input variables (2) variance of observation (3) training data size and (4) input-output function. In view of the unknown relationship between input and output function, we use a Taguchi design to improve the practicality of our study results by letting it as a noise factor. Experimental study results indicate the following: When the level of the variance is medium, Bagging & Parameter Combining performs worse than Logistic Regression, Variable Selection Bagging and Clustering. However, classification performances of Logistic Regression, Variable Selection Bagging, Bagging and Clustering are not significantly different when the variance of input data is either small or large. When there is strong correlation in input variables, Variable Selection Bagging outperforms both Logistic Regression and Parameter combining. In general, Parameter Combining algorithm appears to be the worst at our disappointment.

  • PDF

Ensemble-By-Session Method on Keystroke Dynamics based User Authentication

  • Ho, Jiacang;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2016
  • There are many free applications that need users to sign up before they can use the applications nowadays. It is difficult to choose a suitable password for your account. If the password is too complicated, then it is hard to remember it. However, it is easy to be intruded by other users if we use a very simple password. Therefore, biometric-based approach is one of the solutions to solve the issue. The biometric-based approach includes keystroke dynamics on keyboard, mice, or mobile devices, gait analysis and many more. The approach can integrate with any appropriate machine learning algorithm to learn a user typing behavior for authentication system. Preprocessing phase is one the important role to increase the performance of the algorithm. In this paper, we have proposed ensemble-by-session (EBS) method which to operate the preprocessing phase before the training phase. EBS distributes the dataset into multiple sub-datasets based on the session. In other words, we split the dataset into session by session instead of assemble them all into one dataset. If a session is considered as one day, then the sub-dataset has all the information on the particular day. Each sub-dataset will have different information for different day. The sub-datasets are then trained by a machine learning algorithm. From the experimental result, we have shown the improvement of the performance for each base algorithm after the preprocessing phase.

Predicting numeric ratings for Google apps using text features and ensemble learning

  • Umer, Muhammad;Ashraf, Imran;Mehmood, Arif;Ullah, Saleem;Choi, Gyu Sang
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.95-108
    • /
    • 2021
  • Application (app) ratings are feedback provided voluntarily by users and serve as important evaluation criteria for apps. However, these ratings can often be biased owing to insufficient or missing votes. Additionally, significant differences have been observed between numeric ratings and user reviews. This study aims to predict the numeric ratings of Google apps using machine learning classifiers. It exploits numeric app ratings provided by users as training data and returns authentic mobile app ratings by analyzing user reviews. An ensemble learning model is proposed for this purpose that considers term frequency/inverse document frequency (TF/IDF) features. Three TF/IDF features, including unigrams, bigrams, and trigrams, were used. The dataset was scraped from the Google Play store, extracting data from 14 different app categories. Biased and unbiased user ratings were discriminated using TextBlob analysis to formulate the ground truth, from which the classifier prediction accuracy was then evaluated. The results demonstrate the high potential for machine learning-based classifiers to predict authentic numeric ratings based on actual user reviews.

Face Recognition based on Hybrid Classifiers with Virtual Samples (가상 데이터와 융합 분류기에 기반한 얼굴인식)

  • 류연식;오세영
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.19-29
    • /
    • 2003
  • This paper presents a novel hybrid classifier for face recognition with artificially generated virtual training samples. We utilize both the nearest neighbor approach in feature angle space and a connectionist model to obtain a synergy effect by combining the results of two heterogeneous classifiers. First, a classifier called the nearest feature angle (NFA), based on angular information, finds the most similar feature to the query from a given training set. Second, a classifier has been developed based on the recall of stored frontal projection of the query feature. It uses a frontal recall network (FRN) that finds the most similar frontal one among the stored frontal feature set. For FRN, we used an ensemble neural network consisting of multiple multiplayer perceptrons (MLPs), each of which is trained independently to enhance generalization capability. Further, both classifiers used the virtual training set generated adaptively, according to the spatial distribution of each person's training samples. Finally, the results of the two classifiers are combined to comprise the best matching class, and a corresponding similarit measure is used to make the final decision. The proposed classifier achieved an average classification rate of 96.33% against a large group of different test sets of images, and its average error rate is 61.5% that of the nearest feature line (NFL) method, and achieves a more robust classification performance.

Parallel Implementation of A Neural Network Ensemble on the Connection Machine CM-2 (Connection Machine CM-2상에서 신경망군(群)의 병렬 구현)

  • 김대진
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.28-41
    • /
    • 1997
  • This paper describes a parallel implementation of a neurla network ensemble developed for object recognition on the connection machine CM-2. The implementation ensures that multiple networks are implemented simultaneously starting from different initial weights and all training samples are applied to each network by one sample per a copy of each network. When compared with a sequential implementation, this accelerates the computation speed by O(N.m.n) where N, m, and n are the network, respectively. The speedup in the computation time and the convergence characteristics of sthe modified backpropagation learning precedure were evaluated by two-dimensional object recognition problem.

  • PDF

A Study of Image Classification using HMC Method Applying CNN Ensemble in the Infrared Image

  • Lee, Ju-Young;Lim, Jae-Wan;Koh, Eun-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1377-1382
    • /
    • 2018
  • In the marine environment, many clutters have similar features with the marine targets due to the diverse changes of the air temperature, water temperature, various weather and seasons. Also, the clutters in the ground environment have similar features due to the same reason. In this paper, we proposed a robust Hybrid Machine Character (HMC) method to classify the targets from the clutters in the infrared images for the various environments. The proposed HMC method adopts human's multiple personality utilization and the CNN ensemble method to classify the targets in the ground and marine environments. This method uses an advantage of the each environmental training model. Experimental results demonstrate that the proposed method has better success rate to classify the targets and clutters than previously proposed CNN classification method.

Proper Noun Embedding Model for the Korean Dependency Parsing

  • Nam, Gyu-Hyeon;Lee, Hyun-Young;Kang, Seung-Shik
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • Dependency parsing is a decision problem of the syntactic relation between words in a sentence. Recently, deep learning models are used for dependency parsing based on the word representations in a continuous vector space. However, it causes a mislabeled tagging problem for the proper nouns that rarely appear in the training corpus because it is difficult to express out-of-vocabulary (OOV) words in a continuous vector space. To solve the OOV problem in dependency parsing, we explored the proper noun embedding method according to the embedding unit. Before representing words in a continuous vector space, we replace the proper nouns with a special token and train them for the contextual features by using the multi-layer bidirectional LSTM. Two models of the syllable-based and morpheme-based unit are proposed for proper noun embedding and the performance of the dependency parsing is more improved in the ensemble model than each syllable and morpheme embedding model. The experimental results showed that our ensemble model improved 1.69%p in UAS and 2.17%p in LAS than the same arc-eager approach-based Malt parser.