• 제목/요약/키워드: enhancing inference performance

검색결과 9건 처리시간 0.023초

온톨로지 기반의 상황정보관리에서 추론 성능 향상을 위한 어플리케이션 지향적 상황정보 선인출 기법 (Application-Oriented Context Pre-fetch Method for Enhancing Inference Performance in Ontology-based Context Management)

  • 이재호;박인석;이동만;현순주
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권4호
    • /
    • pp.254-263
    • /
    • 2006
  • 유비쿼터스 컴퓨팅 환경에서 온툴로지 기반의 상황정보 모델은 추론을 통한 개념적 상황정보의 획득, 상황정보의 공유와 재사용의 이점을 제공하기 때문에 널리 사용되고 있다. 이 중에서 추론은 상황인지 어플리케이션이 센서로부터 직접 얻을 수 없는 개념적 상황정보를 이용할 수 있도록 해준다. 하지만 추론의 경우, 그 처리 시간이 대상이 되는 상황정보의 크기가 커질수록 증가하게 되며, 이때 야기되는 시간 지연은 상황인지 어플리케이션의 실제적인 동작을 방해한다. 본 논문에서는, 추론 속도를 향상시키기 위해 작업 메모리에서 처리되는 상황정보의 크기를 줄이는 상황정보 선인출 기법을 제안한다. 우리는 상황인지 어플리케이션의 질의와 관련이 있는 상황정보를 결정하기 위해 기존의 쿼리트리를 이용한 방법을 확장한다. 제안한 기법을 이용하여 선인출된 상황정보만 작업 메모리에 유지함으로써, 온툴로지 기반의 상황정보가 제공하는 이점을 유지하면서 추론에 의해 야기되는 시간 지연을 줄일 수 있다. 우리는 제안한 기법을 기존의 유비쿼터스 컴퓨팅 미들웨어, Active Surroundings에 적용시키고 실험을 통해 성능 향상을 보였다.

퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선 (Performance Improvement of Multiple Observer based FDIS using Fuzzy Logic)

  • 류지수;이기상
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.444-451
    • /
    • 1999
  • A diagnostic rule-base design method for enhancing fault detection and isolation performance of multiple obsever based fault detection isolation schemes (FIDS) is presented. The diagnostic rule-base has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises a rule base and a fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic with threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rult-base. The suggested scheme is applied to the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구 (A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제26권2호
    • /
    • pp.129-152
    • /
    • 2024
  • 터널 내 CCTV를 통한 딥러닝 객체인식 적용에 있어서 터널의 열악한 환경조건, 즉 낮은 조도 및 심한 원근현상으로 인해 오탐지가 대량 발생한다. 이 문제는 객체인식 성능에 기반한 영상유고시스템의 신뢰성 문제로 직결되므로 정탐지 향상과 더불어 오탐지의 저감 방안이 더욱 필요한 상황이다. 이에 본 논문은 딥러닝 객체인식 모델을 기반으로, 오탐지 데이터의 재학습을 통해 오탐지의 저감뿐만 아니라 정탐지 성능 향상도 함께 추구하는 오탐지 학습법을 제안한다. 본 논문의 오탐지 학습법은 객체인식 단계를 기반으로 진행되며, 학습용 데이터셋 초기학습 - 검증용 데이터셋 추론 - 오탐지 데이터 정정 및 데이터셋 구성 - 학습용 데이터셋에 추가 후 재학습으로 이어진다. 본 논문은 이에 대한 성능을 검증하기 위해 실험을 진행하였으며, 우선 선행 실험을 통해 본 실험에 적용할 딥러닝 객체인식 모델의 최적 하이퍼파라미터를 결정하였다. 그리고 본 실험에서는 학습영상 포맷을 결정하기 위한 실험, 반복적인 오탐지 데이터셋의 재학습을 통해 장기적인 성능향상을 확인하기 위한 실험을 순차적으로 진행하였다. 그 결과, 첫 번째 본 실험에서는 추론된 영상 내에서 객체를 제외한 배경을 제거시키는 경우보다 배경을 포함시키는 경우가 객체인식 성능에 유리한 것으로 나타났으며, 두 번째 본 실험에서는 재학습 차수별 독립적으로 오탐지 데이터를 재학습시키는 경우보다 차수마다 발생하는 오탐지 데이터를 누적시켜 재학습 시키는 경우가 지속적인 객체인식 성능 향상 측면에서 유리한 것으로 나타났다. 두 실험을 통해 결정된 방법으로 오탐지 데이터 재학습을 진행한 결과, 차량 객체 클래스는 1차 재학습 이후부터 AP값이 0.95 이상 우수한 추론 성능이 발현되었으며, 5차 재학습까지 초기 추론 대비 약 1.06배 추론성능이 향상되었다. 보행자 객체 클래스는 재학습이 진행됨에 따라 지속적으로 추론 성능이 향상되었으며, 18차 재학습까지 초기 추론대비 2.3배 이상 추론성능이 자가 향상될 수 있음을 보였다.

퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선 (Performance Improvement of MOS type FDIS using Fuzzy Logic)

  • 류지수;박태건;이기상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.410-413
    • /
    • 1998
  • A passive approach for enhancing fault detection and isolation performance of multiple observer based fault detection isolation schemes(FDIS) is proposed. The FDIS has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises of a rule base and fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic and threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rule base. The suggested scheme is applied for the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권7호
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.

Feasibility Study of Environmental and Geographical Data Transfer (EGDT) Device for Wide-Area Environmental Sampling in Undeclared Areas

  • Seungil Ha;Dalhyeon Ryu;Giyoon Kim;Myungsoo Kim
    • 방사성폐기물학회지
    • /
    • 제22권2호
    • /
    • pp.145-157
    • /
    • 2024
  • Undeclared nuclear activities are challenging given the lack of information from the sites involved in such activities. Wide-area environmental sampling (WAES) can be an effective method to detect undeclared nuclear activities. However, it is crucial to address the potential risks during the WAES, including sample tampering or extortions. Therefore, tracking and monitoring of various on-site data is imperative to accurately interpret the status of samples and workers throughout the WAES process. 'Environmental and Geographical Data Transfer (EGDT)' was developed for the real-time monitoring of integrated on-site data. EGDT module is equipped with various sensors and can be attached to a worker's uniform or a sample storage box. This study demonstrated the technical effectiveness of EGDT by exploring three experimental methodologies for feasibility assessment. Compared to the Normal Operation case, the inference of the Sample Extortion case was predominantly based on changes in lux and dose rate. The inference of the Out-of-Work-Area case primarily relied on changes in dose rate and acceleration. Finally, the preliminary evaluation of the performance of the developed prototype was conducted, and a foundation was established for enhancing the application in the WAES process.

인접구조물의 내진성능개선을 위한 준능동 MR감쇠기의 GA-최적퍼지제어 (GA-based Optimal Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Performance Improvement of Adjacent Structures)

  • 윤중원;박관순;옥승용
    • 한국안전학회지
    • /
    • 제26권4호
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a GA-based optimal fuzzy control technique for the vibration control of earthquakeexcited adjacent structures interconnected with semi-active magneto-rheological(MR) dampers. Rule-based fuzzy logic controllers are designed first by implementing heuristic knowledge and the genetic algorithm(GA) is then introduced to optimally tune the fuzzy controllers for enhancing the seismic performance of semi-active control system. For practical implementation, the fuzzy controller simply uses locally measured responses of the dampers involved and directly returns the input voltage to the magneto-rheological dampers in real time through the fuzzy inference mechanism. The local measurement based fuzzy controller provides optimal damping force in a decentralized manner so that it does not require a primary central controller unlike the conventional semi-active control techniques. As a result, it can avoid the unbridgeable discrepancy between the desired control force and the actual damper force that may occur in the conventional control approaches. The validity and effectiveness of the proposed control method are shown numerically on two 20-story earthquake-excited buildings interconnected with MR dampers.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.