• Title/Summary/Keyword: enhancing inference performance

Search Result 9, Processing Time 0.023 seconds

Application-Oriented Context Pre-fetch Method for Enhancing Inference Performance in Ontology-based Context Management (온톨로지 기반의 상황정보관리에서 추론 성능 향상을 위한 어플리케이션 지향적 상황정보 선인출 기법)

  • Lee Jae-Ho;Park In-Suk;Lee Dong-Man;Hyun Soon-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.4
    • /
    • pp.254-263
    • /
    • 2006
  • Ontology-based context models are widely used in ubiquitous computing environment because they have advantages in the acquisition of conceptual context through inferencing, context sharing, and context reusing. Among the benefits, inferencing enables context-aware applications to use conceptual contexts which cannot be acquired by sensors. However, inferencing causes processing delay and thus becomes the major obstacle to the implementation of context-aware applications. The delay becomes longer as the amount of contexts increases. In this paper, we propose a context pre-fetching method to reduce the size of contexts to be processed in a working memory in attempt to speed up inferencing. For this, we extend the query-tree method to identify contexts relevant to the queries of a context-aware application. Maintaining the pre-fetched contexts optimal in a working memory, the processing delay of inference reduces without the loss of the benefits of ontology-based context model. We apply the proposed scheme to our ubiquitous computing middleware, Active Surroundings, and demonstrate the performance enhancement by experiments.

Performance Improvement of Multiple Observer based FDIS using Fuzzy Logic (퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선)

  • Ryu, Ji-Su;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.444-451
    • /
    • 1999
  • A diagnostic rule-base design method for enhancing fault detection and isolation performance of multiple obsever based fault detection isolation schemes (FIDS) is presented. The diagnostic rule-base has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises a rule base and a fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic with threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rult-base. The suggested scheme is applied to the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

A study on improving self-inference performance through iterative retraining of false positives of deep-learning object detection in tunnels (터널 내 딥러닝 객체인식 오탐지 데이터의 반복 재학습을 통한 자가 추론 성능 향상 방법에 관한 연구)

  • Kyu Beom Lee;Hyu-Soung Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.2
    • /
    • pp.129-152
    • /
    • 2024
  • In the application of deep learning object detection via CCTV in tunnels, a large number of false positive detections occur due to the poor environmental conditions of tunnels, such as low illumination and severe perspective effect. This problem directly impacts the reliability of the tunnel CCTV-based accident detection system reliant on object detection performance. Hence, it is necessary to reduce the number of false positive detections while also enhancing the number of true positive detections. Based on a deep learning object detection model, this paper proposes a false positive data training method that not only reduces false positives but also improves true positive detection performance through retraining of false positive data. This paper's false positive data training method is based on the following steps: initial training of a training dataset - inference of a validation dataset - correction of false positive data and dataset composition - addition to the training dataset and retraining. In this paper, experiments were conducted to verify the performance of this method. First, the optimal hyperparameters of the deep learning object detection model to be applied in this experiment were determined through previous experiments. Then, in this experiment, training image format was determined, and experiments were conducted sequentially to check the long-term performance improvement through retraining of repeated false detection datasets. As a result, in the first experiment, it was found that the inclusion of the background in the inferred image was more advantageous for object detection performance than the removal of the background excluding the object. In the second experiment, it was found that retraining by accumulating false positives from each level of retraining was more advantageous than retraining independently for each level of retraining in terms of continuous improvement of object detection performance. After retraining the false positive data with the method determined in the two experiments, the car object class showed excellent inference performance with an AP value of 0.95 or higher after the first retraining, and by the fifth retraining, the inference performance was improved by about 1.06 times compared to the initial inference. And the person object class continued to improve its inference performance as retraining progressed, and by the 18th retraining, it showed that it could self-improve its inference performance by more than 2.3 times compared to the initial inference.

Performance Improvement of MOS type FDIS using Fuzzy Logic (퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선)

  • Ryu, Ji-Su;Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.410-413
    • /
    • 1998
  • A passive approach for enhancing fault detection and isolation performance of multiple observer based fault detection isolation schemes(FDIS) is proposed. The FDIS has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises of a rule base and fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic and threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rule base. The suggested scheme is applied for the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

FuzzyGuard: A DDoS attack prevention extension in software-defined wireless sensor networks

  • Huang, Meigen;Yu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3671-3689
    • /
    • 2019
  • Software defined networking brings unique security risks such as control plane saturation attack while enhancing the performance of wireless sensor networks. The attack is a new type of distributed denial of service (DDoS) attack, which is easy to launch. However, it is difficult to detect and hard to defend. In response to this, the attack threat model is discussed firstly, and then a DDoS attack prevention extension, called FuzzyGuard, is proposed. In FuzzyGuard, a control network with both the protection of data flow and the convergence of attack flow is constructed in the data plane by using the idea of independent routing control flow. Then, the attack detection is implemented by fuzzy inference method to output the current security state of the network. Different probabilistic suppression modes are adopted subsequently to deal with the attack flow to cost-effectively reduce the impact of the attack on the network. The prototype is implemented on SDN-WISE and the simulation experiment is carried out. The evaluation results show that FuzzyGuard could effectively protect the normal forwarding of data flow in the attacked state and has a good defensive effect on the control plane saturation attack with lower resource requirements.

Feasibility Study of Environmental and Geographical Data Transfer (EGDT) Device for Wide-Area Environmental Sampling in Undeclared Areas

  • Seungil Ha;Dalhyeon Ryu;Giyoon Kim;Myungsoo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.145-157
    • /
    • 2024
  • Undeclared nuclear activities are challenging given the lack of information from the sites involved in such activities. Wide-area environmental sampling (WAES) can be an effective method to detect undeclared nuclear activities. However, it is crucial to address the potential risks during the WAES, including sample tampering or extortions. Therefore, tracking and monitoring of various on-site data is imperative to accurately interpret the status of samples and workers throughout the WAES process. 'Environmental and Geographical Data Transfer (EGDT)' was developed for the real-time monitoring of integrated on-site data. EGDT module is equipped with various sensors and can be attached to a worker's uniform or a sample storage box. This study demonstrated the technical effectiveness of EGDT by exploring three experimental methodologies for feasibility assessment. Compared to the Normal Operation case, the inference of the Sample Extortion case was predominantly based on changes in lux and dose rate. The inference of the Out-of-Work-Area case primarily relied on changes in dose rate and acceleration. Finally, the preliminary evaluation of the performance of the developed prototype was conducted, and a foundation was established for enhancing the application in the WAES process.

GA-based Optimal Fuzzy Control of Semi-Active Magneto-Rheological Dampers for Seismic Performance Improvement of Adjacent Structures (인접구조물의 내진성능개선을 위한 준능동 MR감쇠기의 GA-최적퍼지제어)

  • Yun, Jung-Won;Park, Kwan-Soon;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.69-79
    • /
    • 2011
  • This paper proposes a GA-based optimal fuzzy control technique for the vibration control of earthquakeexcited adjacent structures interconnected with semi-active magneto-rheological(MR) dampers. Rule-based fuzzy logic controllers are designed first by implementing heuristic knowledge and the genetic algorithm(GA) is then introduced to optimally tune the fuzzy controllers for enhancing the seismic performance of semi-active control system. For practical implementation, the fuzzy controller simply uses locally measured responses of the dampers involved and directly returns the input voltage to the magneto-rheological dampers in real time through the fuzzy inference mechanism. The local measurement based fuzzy controller provides optimal damping force in a decentralized manner so that it does not require a primary central controller unlike the conventional semi-active control techniques. As a result, it can avoid the unbridgeable discrepancy between the desired control force and the actual damper force that may occur in the conventional control approaches. The validity and effectiveness of the proposed control method are shown numerically on two 20-story earthquake-excited buildings interconnected with MR dampers.

Slope stability prediction using ANFIS models optimized with metaheuristic science

  • Gu, Yu-tian;Xu, Yong-xuan;Moayedi, Hossein;Zhao, Jian-wei;Le, Binh Nguyen
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.339-352
    • /
    • 2022
  • Studying slope stability is an important branch of civil engineering. In this way, engineers have employed machine learning models, due to their high efficiency in complex calculations. This paper examines the robustness of various novel optimization schemes, namely equilibrium optimizer (EO), Harris hawks optimization (HHO), water cycle algorithm (WCA), biogeography-based optimization (BBO), dragonfly algorithm (DA), grey wolf optimization (GWO), and teaching learning-based optimization (TLBO) for enhancing the performance of adaptive neuro-fuzzy inference system (ANFIS) in slope stability prediction. The hybrid models estimate the factor of safety (FS) of a cohesive soil-footing system. The role of these algorithms lies in finding the optimal parameters of the membership function in the fuzzy system. By examining the convergence proceeding of the proposed hybrids, the best population sizes are selected, and the corresponding results are compared to the typical ANFIS. Accuracy assessments via root mean square error, mean absolute error, mean absolute percentage error, and Pearson correlation coefficient showed that all models can reliably understand and reproduce the FS behavior. Moreover, applying the WCA, EO, GWO, and TLBO resulted in reducing both learning and prediction error of the ANFIS. Also, an efficiency comparison demonstrated the WCA-ANFIS as the most accurate hybrid, while the GWO-ANFIS was the fastest promising model. Overall, the findings of this research professed the suitability of improved intelligent models for practical slope stability evaluations.

In-depth exploration of machine learning algorithms for predicting sidewall displacement in underground caverns

  • Hanan Samadi;Abed Alanazi;Sabih Hashim Muhodir;Shtwai Alsubai;Abdullah Alqahtani;Mehrez Marzougui
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.307-321
    • /
    • 2024
  • This paper delves into the critical assessment of predicting sidewall displacement in underground caverns through the application of nine distinct machine learning techniques. The accurate prediction of sidewall displacement is essential for ensuring the structural safety and stability of underground caverns, which are prone to various geological challenges. The dataset utilized in this study comprises a total of 310 data points, each containing 13 relevant parameters extracted from 10 underground cavern projects located in Iran and other regions. To facilitate a comprehensive evaluation, the dataset is evenly divided into training and testing subset. The study employs a diverse array of machine learning models, including recurrent neural network, back-propagation neural network, K-nearest neighbors, normalized and ordinary radial basis function, support vector machine, weight estimation, feed-forward stepwise regression, and fuzzy inference system. These models are leveraged to develop predictive models that can accurately forecast sidewall displacement in underground caverns. The training phase involves utilizing 80% of the dataset (248 data points) to train the models, while the remaining 20% (62 data points) are used for testing and validation purposes. The findings of the study highlight the back-propagation neural network (BPNN) model as the most effective in providing accurate predictions. The BPNN model demonstrates a remarkably high correlation coefficient (R2 = 0.99) and a low error rate (RMSE = 4.27E-05), indicating its superior performance in predicting sidewall displacement in underground caverns. This research contributes valuable insights into the application of machine learning techniques for enhancing the safety and stability of underground structures.